
GAME LEVEL DESIGN

ED BYRNE

CHARLES RIVER MEDIA
Boston, Massachusetts

Copyright 2005 Career & Professional Group, a division of Thomson Learning, Inc.
Published by Charles River Media, an imprint of Thomson Learning Inc.
All rights reserved.

No part of this publication may be reproduced in any way, stored in a retrieval system of any
type, or transmitted by any means or media, electronic or mechanical, including, but not
limited to, photocopy, recording, or scanning, without prior permission in writing from the
publisher.

Cover Design: Tyler Creative
Cover Images: Ed Byrne

CHARLES RIVER MEDIA
25 Thomson Place
Boston, Massachusetts 02210
617-757-7900
617-757-7969 (FAX)
crm.info@thomson.com
www. charlesriver.com

This book is printed on acid-free paper.
Ed Byrne. Game Level Design.
ISBN-13: 978-1-58450-369-9
ISBN-10: 1-58450-369-6
All brand names and product names mentioned in this book are trademarks or service marks
oftheir respective companies. Any omission or misuse (of any kind) of service marks or trade-
marks should not be regarded as intent to infringe on the property of others. The publisher
recognizes and respects all marks used by companies, manufacturers, and developers as a
means to distinguish their products.

Library of Congress Cataloging-in-Publication Data
Byrne, Edward, 1975-

Game level design / Edward Byrne.
p. cm.

1. Computer games--Design. 2. Video games—Design. I. Title.
QA76.76.C672B97 2005

794.8'1536--dc22

2004023497

Printed in the United States of America
077654
CHARLES RIVER MEDIA titlesare available for site license or bulk purchase by institutions, user
groups, corporations, etc. For additional information, please contact the Special Sales Depart-
ment at 800-347-7707.

Requests for replacement ofa defective CD-ROM must be accompanied by the original disc,
your mailing address, telephone number, date of purchase and purchase price. Please state the
nature of the problem, and send the information to CHARLES RIVER MEDIA, 25 Thomson Place,
Boston, Massachusetts 02210. CRMs sole obligation to the purchaser is to replace the disc,
based on defective materials or faulty workmanship, but not on the operation or functionality
ofthe product.

This book is dedicated to:

My parents, Terry and Cindy, who gave me everything I could ever need.

Contents

Acknowledgments
Introduction

What This Book Is About
What This Book Includes

A “Genre Agnostic” Approach
So What Are You Waiting For?

Introduction to Level Design
Game Design
Level Designers

Anatomy of Level Design
Art

Design

Engineering

Defining Levels

Brief History of Levels

Creating Pinball—The Mother of Level Design

From Pinball Machines to Super Computers
In the Beginning There Was Space War

The Rise of Home Computing
Level Design Today

Overcoming Memory Constraints

Narrative Chapters

Dividing the Workload

Summary

—

©

©

©

0

NNN

ur

ose

WN

10

<.

Contents

Interview with Richard “Levelord” Gray of Ritual Entertainment

2 Building a Simple Level

Level Design Building Blocks
What About Story?

Putting It All Together

Concept
Environment
Beginning

Ending
Goal

Challenge

Determining the Challenge Mechanics
Reward

Failure

Summary

3 Team Roles and the Pipeline
Development Teams

Management
Producers

Project Managers and Assistant Producers
Creative Director
Leads

Design
Game Designers
Level Designers

Systems Designers
Art

Modelers

Animators

12

15

16

18

18

18

19

19

20

20

2]

22

26

26

26

29
30

31

31

31

31

32

32

33

33

33

34

34

34

Contents

Texture Artists

Special Effects Artists

Interface Artists

Concept Artists

Programming
Gameplay Programmers
Tools Programmers

Graphics Programmers
Audio

Sound Designers

Composers
Other Development Roles

Cutscene Artists

Writers

Testers

Team Setup
Small Teams

Mid-Sized Teams

Large Teams

The Pipeline
The Unarguable Benefits of a Solid Pipeline

Pipeline and Technology
The Game Engine
The Game Editor

Pipeline as Defined by the Team

Summary
Interview with Hayden Wilkinson of KnowWonder Digital Mediaworks

4 Basic Level Design Theory
What Makes the Level Fun

Player Ergonomics—No Learning by Death

Allow Players to Save and Reload

ix

35

35

35

36

36

37

37

37

38

38

39

39

39

39

40

40

41

41

42

44

45

46

47

47

48

48

48

55
57

59

60

Contents

Give Clues 61
Be Aware of the Player’s Comfort Level 61

Level Flow—Keep the Player Moving 62
Dissonance and the Importance of Believability 62
The Constant Danger of Boredom 64

Rhythm—Create a Roller Coaster Rather Than a Highway 67
Aesthetic Rhythm 69

Difficulty—Let the Player Win, Not the Designer 71

Dynamic Difficulty Adjustment 74
Wow Factor—The Water Cooler Moments 74
Hooks—Setting Your Level Apart 76
Summary 77
Interview with Dream Smith of Griptonite Games 78

5 Refining the Player Experience 83
Creating a Level Abstract 84
What Happens Now? 86
Connectivity and Defining the Boundaries 86

The Big Picture 86
Flow Versus Freedom 87
Different Flow Models 87

Gameplay Narrative 93
Ingredients 94

Designing Ingredients 95
Physics as Ingredients 96
Encounters 98
Challenging the Player’s Game Knowledge 99
Creating Tension 100

Foreshadowing 100
Lighting 101

Paradigm Shifts 101

Contents

Music and Sound

Risks and Rewards

Rewards in General

Scripted Gameplay

Using Artificial Intelligence

States of Being
Decisions, Input and Output
Pathing and Patrols

Level Gestalt

Summary
Interview with Harvey Smith

6 Common Level Design Limitations

Technical Limitations

Memory

Processing Power and Frame Rate

Level Performance

Polycount and Performance

Level Lighting
Artificial Intelligence
Media Format
Target and Minimum Specs

Environmental Limitations

Locations

Environmental Settings

Creating a Reference File

A Final Word: Constraints in Licensed Games

Summary

7 Designing and Documenting the Level

Game Metrics

102

103

103

104

105

105

106

107

109

109

110

121

122

123

124

124

125

127

128

134

135

136

137

137

139

139

139

141

142

Contents

Different Metrics for Different Games 144
Powerups and Temporary Modifiers 144
User-Definable Metrics 145
Permanent Modifiers: Upgrades, Equipment, and Environmental Aids

~~
146

Generating Gameplay—Brainstorming and Loose-Leaf Ideas 146
The Cell Diagram 148
War Rooms 149
Creating a Paper Design 150

Getting Started 151

Adding Details to the Level Draft 151

Choosing Your Design Environment 160
Supporting Documents 160

The Asset List 160
The Walkthrough 161

Conceptualizing Your Level with Visuals 162
Reviews and Revisions 163
Getting the Sign-Off 165
Summary 165
Interview with Ian Fischer of Ensemble Studios 166

8 Using a Level Editor: Building a 3D Space in UnrealEd 171
Installing and Opening the Editor 172
Starting a New Map 173
Undo and Redo 175
Viewing the Level in UnrealEd 175
Moving and Working in Three Dimensions 177
Camera Movement Controls in the Editor 177

3D View 178
Top, Front, or Side Views 178

Working with Level Geometry 178
Different Geometry Types in UnrealEd 179
BSP 179

Contents

Static Mesh

Terrain

Building the Level Hull in BSP

What Is a Brush?

What Is the Builder Brush?

Creating a Builder Brush

Placing Actors

The PlayerStart Actor

Adding Lights

Testing the Level

Loading Textures

Units of Measurement

Apply the Texture to the Level

Moving Actors in the Level

Moving Actorsin the 3D View

Moving Actors in the 2D View

Adding a Static Mesh Actor

Changing the Build Parameters

Adjusting and Duplicating BSP

A Final Word on Grids, Snapping, and Clean Geometry

Summary

9 Building the Level Part 1: Basic Building Techniques

Restrain Yourself

The Difference Between 2D and 3D Levels

The Whitebox Process

Whiteboxing the Level Hull

Scale

Scale Problems in Third-Person Titles

Volume

Quality

Popular Level Building Approaches

207
209

209

210

212

213

213

216

217

223

xiv Contents

Building Your Level in Sections
Building in Layers

Customizing Your Building Process
Optimization Techniques

Zones and Portals
Occlusion Objects
Spawners

Test Your Work Constantly
Summary
An Interview with Lee Perry of Epic Games

10 Building the Level Part 2: Visual Design
In a Fight Between Graphics and Gameplay...
Structure and Beauty, Perfect Together
The Style Guide

Texturing

Textures, Shaders, and Materials
Applying Your Textures Correctly
Using Photos as Textures

Tiling and Nontiling Textures
The Dangersof Stretching Your Textures (and Your Relationship
with the Artists Who Made Them)
Breaking Up Geometry to Support Texturing
Keeping Your Texturing Consistent
Colors Within Textures

Lighting
How Light Works
RGB Versus RYB

Game Lighting
Level Lighting

Lighting Parameters in Games

223

225

227

227

228

230

232

233

234

235

239
240

241

242

243

244

245

246

247

249

250

250

251

252

252

253

253

253

256

Contents XV

Common Light Types 258

Level Lighting Techniques 262

Lighting in Multiplayer Levels 268

Common Lighting Mistakes 269

Placing Props 271

Additional Visual Elements 272

Summary 277

Interview with Mathieu Bérubé of Ubisoft Entertainment, Inc. 277

11 Building the Level Part 3: Theme, Investment, and Atmosphere 281

Dissonance Strikes Back 282

The Elements of a Great-Feeling Level 284

Theme 284

Style 284

Natural Elements 285

Sound and Music 285

Character Accents and Costume 286

Lighting 286

Puzzle Components 287

Al Behavior 287

Weapons and Items 288

Player Investment—Believability and Consistency 288

Provide Real-Life Services 289

Give Your NPCs Life Beyond Their Purpose 289

Don’t Mistake Realism for Immersion 290

Atmosphere 293

Letting the Player’s Imagination Do the Work 293

Atmospheric Audio 298

Summary 298

An Interview with Rich Carlson of Digital Eel 299

xvi Contents

12 A Case Study: The CIA Level from Tom Clancy's Splinter Cell 305
An Introduction to Splinter Cell 306

The Team 307
The Pipeline 307

Creating the Level Design Structure 307
Mission 2.1—The CIA 308

Assembling Reference 312
The Design Process 315
Building the CIA from Scratch 318
The Danger of Unknown Metrics 320
Shifting Technical Limitations 320
Reducing the Scope 321
Cutting Back on Content 321
Resuming Production 323
Cleaning Up 324
Scripting 325
Tuning 327
Adjusting the Difficulty 327
Wrapping Up 328
Summary 328

What Went Wrong 328
What Went Right 329

13 Final Word 331
The Endof the Beginning 332
Where to Go Next 332

Books
332

Web Sites

Thanks To You, the Reader

Appendix About the CD-ROM

Index

Contents XVii

333

333

335

339

= Acknowledgments

This book would not have been possible without the tremendous support from a

number of individuals:

Jenifer Niles and Charles River Media for their patience, professionalism, and the

opportunity to write this book in thefirst place.

Mathieu Bérubé, Rich Carlson, Ian Fischer, Richard “Levelord” Gray, Lee Perry,
Dream Smith, Harvey Smith, and Hayden Wilkinson for graciously taking time to

answer my questions and shed light into the dark corners of level design.

To my friends Neil Alphonso, Del Chafe, Jess Crable, Eric Dallaire, Crista Forest,

Raphael van Leirop, R.J. Martin, Christine Miller, and everyoneat GI, for their un-
wavering support, assistance, and advice on the book.

And most importantly, to Ciaran, Willow, and my unfailingly amazing wife, Katja.

xix

= Introduction

xxii Game Level Design

hanks for picking up this book. Perhaps you have an interest in designing
greatlevels for games, either as someone who wants to know how levels are
made, or someone who wants to make levels professionally for commercial

titles. If that’s the case, you're in the right place, and it’s most certainly the righttime. Level design is a fast-growing and diverse part of game development. In writ-
ing this book,I havetried to convey the theory, realities, and advice I have acquiredin my time as an artist, game designer, and level designer.

WHAT THIS BOOK IS ABOUT

What you won't find in this book are complex lessons or tutorials on making levels
for specific games and technology. The technology that drives games evolves so
quickly; much of the information would be outdated within a year or two. Thisbook is not about architecture, game art, or scripting, either. There are countless ar-ticles, tutorials, and books available on these and other level-design related subjectsin your local library and on the Internet. Instead, this book is about the fundamen-
tals of level design—to help you on your way by teaching you common proceduresfor designing, drafting, and creating interactive environments for games. For in-
stance, what does it mean to be a level designer on a development team? As a level
designer, you will be in contact with every department on your team, and operate onthe frontlines of the production process, creating game content and fixing critical
problems. This book will explain whatlevel design is, where it came from, and, most
importantly, how to plan, design, and construct levels professionally for modern-
day computer and video games.

WHAT THIS BOOK INCLUDES

Game Level Design includes a comprehensive look at the basic, advanced, and real-
world techniques used to create game levels for hit titles. This book also contains aselection of interviews with notable level designers to provide both supporting, and
alternative, views on the craft, as well as valuable information about designing lev-
els from people working in all aspects ofthe games industry. In order of appear-ance, interviewees include the following:

Introduction

~~
XXiii

Richard “Levelord” Gray, Ritual Entertainment
Hayden Wilkinson, Knowwonder Entertainment
Dream Smith, Griptonite Games
Harvey Smith, formerly of Ion Storm
Ian Fischer, Ensemble Studios
Lee Perry, Epic Games
Mathieu Bérubé, Ubisoft Entertainment Inc.
Rich Carlson, Digital Eel

EE

EEE

EBEB

Level Design Tools

(i Included on the companion CD-ROM are the following level design tools:
ON THE CD

® Photoshop LE,a trial version of the industry-standard two-dimensional graph-
ics tool

® Unreal 2 Runtime Demo, a free version ofthe acclaimed Unreal engine and
level editor used to create diverse titles such as Unreal Tournament 2003, Splin-
ter Cell, Thief 3, Republic Commandos, Harry Potter and the Prisoner ofAzkaban,
and Lineage 2

m Terragen, the free version ofthe classic shareware program that generates some
of the mostrealistic looking skies and landscapes for use in game levels

mm OpenOffice, a free and fully featured open source office suite that contains
everything a level designer needs for documentation and design communication

®m Textures and environments I used to create the illustrations in this book

A “GENRE AGNOSTIC” APPROACH

Although the content in the book uses many examples from popular genres such as

first-person shooters (FPSs) and real-time strategy (RTS) games, the approach is

designed to teach about level design as a genre- and platform-independent craft. All

games need to take place in environments, and by extension, the rules of level de-

sign apply to all games to some degree.

xxiv Game Level Design

SO WHAT ARE YOU WAITING FOR?

Level design is a unique position in game development where you can determine
exactly whatthe player sees, hears, and feels in the game. Sound like a lot of work?Itis, to be sure, but it’s also a lot of fun. Game development is highly collaborative,and extremely experimental, an environment for dreamers, visionaries, and worldbuilders. It requires determination as much as imagination, and restraint as much
as it does enthusiasm. Despite the long hours, the reward of seeing your game on astore shelf, or hearing people talk about one of your levels on the street, is an in-
credibly fulfilling experience. If this sounds like something you wantto be a partof,I'hope you'll pick up this book and enjoy reading it as much as I did writing it. The
game world is your oyster, level designer!

| Introduction to Level
Design

ENGINEERING

DESIGN“4 E
LEVEL DESIGN

ART

'
FINAL PRODUCT

2 Game Level Design

In This Chapter
Game Design
Level Designers
Anatomy of Level Design
Defining Levels
Brief History of Levels
Level Design Today
Summary
Interview with Richard “Levelord” Gray of Ritual Entertainment

people what you do. This chapter will explain what levels are, where theycame from, who makes them, and what “level design” meansfor the pro-duction of a modern video or computer game.

O ne of the hardest things about being a level designeris trying to explain to

GAME DESIGN

Everything that is made has a designer. A designer formulates plans for creatingproducts from concepts. In games, the designeris the person who often conceivesthe original ideas, puts them on paperto present to others (in the form of a designdocument or rough demonstration), and supervises the transition from design toaworking video game.
Being the player’s advocate is the highest function of a game designer duringthe entire process of making a game. Simply put, this means that designers are the“eyes and ears” of the player, and representthe interests ofthe audience during theproduction. If a problem occurs in creating a game such that the player’s needs arenot met, the designer must find a solution. When someone on the team wants toadd something hefeels is really cool, it’s the designer’s job to evaluate the addition’spotential risks, how much players will really use it, and what changes it will maketo the players’ experience, good or bad. In the end, we make games for the players,notfor ourselves, and designers are the people on the team who must always be ableto see the game through the eyes of a player, rather than through the eyes of a tireddeveloper who knows the product inside and out.

On a day-to-day basis, game design is primarily about creating and intercon-
necting all the elements that make up a game—the mechanics—and creating an ap-pealing world in which to house them. Different types of nonplayer characters(NPCs) and their behaviors, weapons, and tools that the player will use and their ef-fects; locations; items; on-screen interfaces; mood; emotional reaction; controls;

Introduction to Level Design 3

and camera views—all these things need to be considered in the early stages of de-
veloping a game. These days, a design team handles the work of documenting and
implementing design decisions. This will be discussed in a later chapter, but the size
of modern games means that the days of a single designer making all the decisions
are quickly coming to an end.

~

LEVEL DESIGNERS

Whenit comesto actually creating the game from these beginning elements, a spe-
cialist is needed to implement the design. Thisis the essence of level design—the
application of the team’s ideas in a playable form. A level designer is the point of
convergence for programming, cinematography, audio, art, and design—all ofthe
components of a modern computer or video game as shown in Figure 1.1. Game
designers create rules and systems that form the backbone of every game, but a level
designer implements them and makes them work properly. In addition, level de-
signers carve out environments, create interesting visuals, monitor the performance
of the game, make sure that technical problems are resolved before the product hits
the shelves and fixes problems in the game. That's a pretty exhausting list of re-
sponsibilities. As such, level design is an extremely important role in today’s pro-
duction team—ultimately, the player experiences the game through a game’s levels.

ENGINEERING

DESIGN“rEART

Y

FINAL PRODUCT

FIGURE 1.1 Art, design, and
code all funnel into level design.

The level designer is an omnipotent powerin the game, responsible for leading
the player through the experience. However, the less the players feel the designer’s
presence, the more they will feel in control of their own virtual destiny. A good level

Game Level Design

designer will create a level that is full of decisions players make. A great level de-
signer will allow playersto feel like they are making the right decisions, even if they
really aren’t. Partly, this can be through the illusion of choice—allowing the player
three ways to choose that all lead to the same room, for example, is an easy way of
letting the players make the surface decisions (“Which way do I go now?”) while
maintaining control of their ultimate destinations. This can be taken further with
concepts like systemic level design where players are given a high degree of freedom
in the environment, but can still be guided along a narrative path. We'll discuss the
different approaches to level design flow in Chapter 5.

On a visual front, level designers use the same art of illusion to create spaces
that feel much bigger than they really are. For a game like Unreal Tournament, this
might mean creating the illusion of an underwater world outside the window of an
undersea base—even though there’s nothing really out there. Fora title like Need

for Speed: Underground, this could be the multitude of inaccessible but plausible
side streets and landmarks seen between buildings that give players the sense they
are racing throughacity rather than just on a single track.

Regardless of the type of game or what platform it is for, until we work out a
way to create worlds with as much rich detail and level of immersion as reallife has,
level designers will have to rely on the art of illusion to create believable and enjoy-
able game spaces.

ANATOMY OF LEVEL DESIGN

Art

Level Design is really a composite role, bringing together several disciplines: art,de-
sign, and engineering.

In the past, games could often reach critical acclaim without the need to be visually
stunning. These days, to create an interesting and atmospheric environment, a level
designer must have some measure of artistic or architectural sense. A level thatis
well balanced, fun to play, and packed full of surprises willstill face player criticism
if the environment is crudely built or features a lot of obviously amateur art. Like-
wise, an architecturally impressive map with nothing to do in it is going to cause
players to complain. Balancing artistic considerations with gameplay needs is an
everyday struggle for the modern level designer. Although some designers can cre-
ate many of their own art assets and take the visual quality of their maps into their
own hands (schedule permitting), others may have more knowledge in a specific
area such as modeling, texturing, lighting, or simply taking a few primitive shapes
and evoking just the right emotions and imagery in the audience.

Introduction to Level Design 5

As games get more complex and level designers are responsible for more am-
bitious content, many teams are adding art support staff to help shoulder the bur-
den of creating engaging aesthetics and allowing the designers to focus on the play
experience. Regardless of who makes a level's assets, however, the level designerstill
holds the vision of the level and will be required to lend direction and vision to his
team members during production. Some ofthe best level designers don’t have an
artistic background but, rather, use books and images to help them make interest-
ing spaces. Level design does not require an art degree by any means; however, a
level designer should be able to illustrate or describe the artistic needs and aesthetic
requirements of the map to his team members.

If you're reading this and despairing—don’t worry. Most of what makes a good
artist is imagination, and the fact that you are, or wantto be, a level designer is a
pretty good indication that imagination is something you possess. Learning how to
use your imagination wisely is something that can be learned—many great books
teach the fundamentals of architecture, lighting, texture creation, and the like, ex-
amples of which will be included in later chapters.

Although the amount of pre-design that goes into a level before building starts
varies, there will always be times when a level designer needs to make a design de-
cision in the process of constructing the map. We'll talk about this later in the
book, but the level designer should be able to handle the implementation ofthe
game design to achieve the goals for that map.

After the initial placement of game elements—after you've put in your enemy’s
units, your traps, puzzles, powerups, and everything that the player is going to in-
teract with, you'll need to “tune”it all. Early drafts of levels are often disjointed and
unbalanced, and unacceptable to release to the public. A level designer’s game in-
tuition is vital at this stage to go through the level and polish it, tweaking parame-
ters, editing the variables for NPCs, trying to anticipate potential problems and
ultimately designing an enjoyable experience for the player.

Level designers also need to be able to spot problems as they work and report
them to the designer or producer. If the game designer is the general directing the
game from above, level designersare scouts, on the front line of production and able
to see potential trouble up close and personal, if they just know what to look for.

Engineering

Although the gulf of knowledge between scripting a level event and actually pro-
gramming game engine functionality is sizable, some aspects of level design are
closer to coding than anything else. Games frequently have an internal “script” sys-
tem that allows designersto access parts of the game code in a more user-friendly

6 Game Level Design

manner. The means differ from project to project, and some level designers need to
be more versed in their game’s scripting language than do others who might use
simpler or more streamlined tools for setting up in-game events or editing level el-
ements. However, the process is still the same—level designers will invariably be
called on to plan, execute, and debug special situations in a level.

As games support larger worlds and more intricate stories, many developers
rely more heavily on scripting to provide a sense of realism and action to the envi-
ronment, as well as to create bigger and more elaborate situations for the player.
Boss battles, patrols, the behavior of certain objects when hit with a projectile or the
behavior of a civilian when seeing one ofthe player’s units—all these things are po-
tentially scripted by the level designer. As such, any knowledge about scripting or
programming can come in quite useful when making playspaces.

Another aspect of level design is technical in nature—performance. Level de-
signers are usually expected to bear a large responsibility for how their environ-
ments run. Every game has limitations in how complex the world can be, how
many moving characters can be calculated, and how many textures or lights can be
displayed in a scene before the game engine is overtaxed and the performance of
play degrades. This often results in loss of frame rate—the view becomes jittery and
the controls become hard to use. Further problems such as objects overlapping the
same space, or errors in the geometry, can cause technical problems too. In general,
the performance issue is one that becomes more and more important as the project
nears the final shipping date, and a level designer needs to know not only how to
spot these problems in a map but also how best to deal with them—be it a work-
around, remaking that part ofthe level, or even amputating the whole section from
the map.

DEFINING LEVELS

The term level is synonymous with “map,” “mission,” or “stage” in many games. The
original term level in games most likely comes from the early arcade machines and
home game systems where the play experience was divided into increments of diffi-
culty,called stages or levels. For instance, once the player had finished the first wave
of enemies, he was considered to have finished “Level One” of however many levels
of difficulty the game allowed. These levels were descendants of “Dungeon levels” in
early role playing and tabletop games like Dungeons and Dragons, which divided the
game environments—most often dungeons and subterranean structures—into ver-
tical floors, which not only determined how deep the players were, but also gave an
indication of how powerful the creatures would be. Level Five creatures were obvi-
ously going to be a much bigger challenge than mere Level Ones, being further from
the surface and the safety of retreat.

Introduction to Level Design 7

A modern game level has a wide range of forms. A common exampleis a sin-
gle Deathmatch or Capture the Flag map you might play in your favorite shooter. Or
it could be a track in a racing game, or simply the maze from PacMan. At its most
basic, a level is simply an environment for gameplay. Does a level have discernible
characteristics? Well,it has physical boundaries. It has entrances and exits. It has
goals, and it has a beginning and an ending—or it has many of them. A level can
contain almost all the game’s systems and mechanics, orit can focus on a single ac-
tivity. Some levels are unique, such as a boss level. Some levels are crossed through
repeatedly like the parts of the city that compose those of Grand Theft Auto 3.

Every game takes place in an environment, and that’s what level designers must
provide—putting the “ground” in playground. A level is really a container for
gameplay.

BRIEF HISTORY OF LEVELS

As long as there have been games, there have been environments to play them in.
Almost every culture has its version of chess, along with a board to play it on. Even
in the absence of a board, players have scratched playfields in the dirt or scribbled
them on paperlike tic-tac-toe. Gameplay needs a vessel in which to exist. Similarly,
although the craft of creating interactive environments for video games is fairly
new, there is a great deal of history behind it.

Creating Pinball-The Mother of Level Design

Although the level designer position as a team role has only been around for the
past 10 yearsor so, games have always needed playfields. In fact, the first examples
of “playfield design” started back in the days when pinball was becoming a national
pastime. Early versions of pinball—called bagatelle —were random affairs. The ball
was entered into the playspace and found its way down through the layout ofpins
until it came to rest in a numbered hole. The player really didn’t have much con-
trol of the ball once it was in play. Although there was some excitement watching
the ball progress through the pins, it was more akin to pulling the lever on a slot
machine, or watching a movie—once the initial interaction of starting the process
was over, the participant could only watch helplessly as events unfolded.

When pinball designers began to add in the element of interactivity, such as the
addition of flippers or the ability to guide the ball into reward-rich areas (i.e., a part
of the board with a cluster of high-scoring bumpers, or triggering the release of
bonus balls), the game made its move from passive to active entertainment. Much
in the way that even though building a game level shares many common elements

8 Game Level Design

with building a movie set or describing a location in a book, what sets it apartis in-
teractivity—the player has the opportunity to choose and alter the flow of events tohis desires. That’s the “play” in gameplay.

It is interesting to note the similarity between pinball design and modern level
design. Both were concerned with the funneling of an avatar—in pinball’s case, the
player avatar was a small metal ball—through an interactive playfield full ofre-wards and hazards. With each generation of pinballs, the designers had to createnew variants on old favorites and develop original ideas to keep players interested.
Level designers would do well to look back to the golden age ofpinball becausethese are our real roots—the first examples of interactive environment design.

From Pinball Machines to Super Computers
As computers began to appear in universities in the 1970s, eager engineers started
turning them to recreational uses, and the transition from the pinball table to video
screen began. Unfortunately, the capabilities of computer-driven playfields were vastlyinferior to the long-established mechanical pinball machines. In addition, the peoplemaking video games were almost always engineers and students taking a break fromtheir real work, rather than professional game designers, so the art of playfield designhad to start all over again, accounting for the new display and control methods.

In the Beginning There Was Space War

Widely considered the grandfather ofall computer games, Space War was actuallydisplayed on an oscilloscope and contained only a single planet at the centerfor twoplayers to fight around against a backdrop of stars. This could be considered thefirst video game level. The planet was not just for decoration—it exerted gravita-tional influence on the players’ ships and projectiles. Thought wentin to creatingan interesting playspace when really, if it had simply been a blank background, noone would have complained.
As games matured, their playspaces matured also. More attention was given tothe way game environments looked, and the kinds of experience different environ-

ments could give the player. Care was taken to ensure the player was steadily chal-
lenged through shifts in environmental parameters. Music and audio played moreimportant roles in both inviting players to the game and providing feedback abouttheir performance. Gradually gameplay went from one-screen action (like Pong orPacMan) to multiscreen or scrolling environments like Pitfall and Tempest, wherethe player was suddenly given greater opportunity for discovery and greater free-dom of movement. Playspaces became richer, and gameplay rules more complex.Defender, for instance, featured a rapidly changing environment, intense special ef-
fects, and audio feedback. Defender was one ofthe first games where the player wasinformed of things happening in another location by audio cues—when a “human”

Introduction to Level Design 9

was converted into an enemy unit,a specific sound effect played. Although the lev-
els allowed the player to travel left and right over the landscape, randomly moving
opponents of varying speeds and accuracy meant simple travel in a straight line was
impossible and the experience of each stage was always slightly different. Even
though the controls were fairly simple, the sheer complexity and intensity of the
levels made Defender a favorite for hard-core arcade junkies.

Similarly, for home systems, the Atari game Adventure had a randomization
routine that meant the player didn’t know where all the necessary items in the
game were each time he played. The game was laid out on a number of screen-sized
rooms that the player would travel between, dodging dragons and collecting re-
quired components to beat the game. The first fledgling elements of level design
were being born to the gaming world.

The Rise of Home Computing

In the 1980s, the rise of home-gaming on consoles and personal computers meant
gamers were hungry for greater challenges, and developers quickly responded with
more advanced level design concepts. Armed with more computing power and in-
creased storage capacity on modern gaming machines, the basic elements of earlier
genres such as moving platforms and enemies with simple, looping attack patterns
were combined and evolved in different waysto create new challenges for the player.
Designers strove to encourage exploration by hiding special rewards or even entire
levels for discovery by the careful player. Environments became more interactive, in-
troducing complex puzzles to block progression and produce richer and more var-
ied gameplay to keep the player challenged. Narrative became an important focus as
games suddenly came with richer back stories and character development rather
than simply suggestive box art. Early text adventures, for example, relied on more
complex story lines and descriptive text to keep the player engaged. A classic adven-
ture in this style was Planetfall, which is widely regarded as being one ofthe first
games to make players cry because of the death of a character.

However, as involved as these new game environments were, there still wasn’t
a specialized role for their creation yet. Video games were made by only a handful
of people, who handled everything required—programming, art, and design.
Audio expectations were low enough that the programmers often handled those as-
pects too. In the heyday of the video arcade in the 1980s, many games were de-
signed, programmed, and decorated by a single person.

LEVEL DESIGN TODAY

Because ofthe explosive increase in complexity and in expectations of modern in-
teractive entertainment, it’s not uncommon to find production teamsof 30, 50, or

10 Game Level Design

even more than 100 developers working for years to complete a single title. In such
an environment, work is divided up into very narrow specializations, and moreoften than not one of these specializations is you—the level designer.

Contemporary level designers have a considerably larger responsibility in gameproduction today. Fortunately, they also have a much bigger palette of tools and a
huge amount of support in production as well. However, levels are not simplyaround because they have a history. Having levels helps a game in many ways, in-
cluding the following:

® Overcoming memory constraints
® Narrative chapters
® Dividing the workload

Overcoming Memory Constraints
In their earliest forms, interactive games were usually simple affairs. Earlier wementioned that Space War wasplayed using an oscilloscope to display two shipsand a planet. Pong had variable speeds and opponent response, but the playfield
never changed. Game graphics were limited by ridiculously meager computational
power by today’s standards, and often took place in limited or repetitive environ-
ments. Most importantly, the technology at the time meant that games needed toload into whatever memory the machine had and stay there until the game wasswitched off or reset. Given that available memory capacities at the dawn of the
computer age were minuscule compared with today’s—the need to keep games assimple as possible was a predominant concern. Later, with the introduction of
portable storage media like floppy disks and tape cassettes, games expanded enor-
mously in both size and scope, and it was impossible to load the whole thing into
computer memory all at once. The concept of levels (or chapters) became more
prominent as a way to break up a game into sections that would only be brought in
when needed. A game that was broken into sections could be much larger than the
available memory of the gaming machine. When each section was finished, it would
be replaced with another section loaded from tape or disk.

Early home computers such as the Commodore 64 or Sinclair Spectrum sub-
jected the player to long waits while stages of the game loaded from tape cassette.
Thankfully, storage media can be read fast enough now that consoles and comput-ers can quite easily load in specific parts of the game they need from the CD orDVD without the player ever knowing. However, levels have also expandedin size,
often having large amounts of unique textures, decorative meshes, character mod-
els, scripted sequences, and a host of support content that makes them impossible
to load other than one at a time. Thus, the original concept of breaking a game into
smaller pieces—levels—is still necessary to avoid straining the processor and toallow epic-sized games to parcel themselves out into bite-sized pieces.

Introduction to Level Design 11

Narrative Chapters

Very commonly, a game’s levels are set up in a narrative fashion, telling a story within
a story. The player character enters the level, explores his surroundings, encountering
increasing challenges and dangers along the way, until the end is reached.

Most games have some form of story or narrative that drawsthe players along,
and many games use levels as a book would chapters—dividing the story into seg-
ments allowing story arcs, the introduction of new characters, resolution of goals,
unexpected return of old enemies, and so on. In many cases, a level is like a
novella—a short, self-contained story that has an introduction, a series of encoun-
ters and challenges, and a final resolution. As games start to create broader, less lin-
ear story lines, levels begin to contain many story possibilities, which we’ll explore
in greater depth later in Chapter 5 as emergent gameplay.

Levels encompass areas of connected gameplay and provide logical breaks be-
tween key story locations. For instance, one level of a game that uses time travel as a
story element might have the players in Berlin in 1800, and the next level has players
in the samecity in the year 3000. Separating these two periods into levels is logical, as
they can be bridged bya cinematic, scripted sequence, or a simple voice-over, to cre-
ate a more dramatic transition between the two locations.

Dividing the Workload

Level design arose out of a need for specialization within game production teams.
As game sales grew, the one-man shows faced new challenges in keeping up with in-
creasing consumer demand for quality and quantity of content. To maintain con-
stant levels of production quality, game teams began to grow in numbers. Aspects
of game development that one person had done previously were gradually being
done by two or three people. With larger teams, programmers who might have
handled both programming and the art were being relieved by full-time profes-
sional artists. Similarly, new positions such as game designers, sound effects engi-
neers, and character animators developed to help spread the effort of creating a

computer game over a wider team of individuals, each with a narrower set of tasks.
The main advantage of creating a gamein stages is that it can be built faster,

and production speed can be a huge factor in gaining a publishing deal or getting a
milestone out the door in time. The more you can subdivide your game into dis-
tinct levels, the more designers can work on them simultaneously. In addition, with
the advent of specialized level editors and working environments, the ease of im-
porting and exporting assets (the individual art pieces used to decorate a level—
props, characters, textures, etc.) into a level has improved dramatically. This means
that a level designer can be working on a map while artists, programmers, and
audio engineers all work on content for it,all of which can be imported easily.

12 Game Level Design

Thisis not to say that designers should seek to break their games into the great-
est number of levels possible. Like everything, thereis a pointat which simply throw-
ing more people at a problem becomes counterproductive. It does mean, however,
that identifying and capitalizing on logical breaks in story, gameplay, and visual
themes by separating them into levels can help reduce the risk and length of a project.

SUMMARY

This chapter covered the reason that level designers exist today. Having an idea for
gameplayis one thing, putting it into practice is another. Level designers oversee
the convergence of materials into thefinal package that players experience. Histor-
ically, level design is the extension of early forms of playfield design—from millen-
nia back where game boards were drawn in the sandto the latest in photo-realistic
game environments.

Levels have been used in games for many reasons: to allow for larger games, to
separate the game experience into narrative or geological locations, and to allow the
team to work on the whole gameat once.

INTERVIEW WITH RICHARD “LEVELORD” GRAY OF RITUAL ENTERTAINMENT

Richard, you've been making levels for quite a while now, and on a variety of
projects. How did you get started as a designer?

Like many of the old veterans, I started with Doom. I still remember when
DEU (Doom Editing Utility) came out. I downloaded it from CompuServe.
The whole time it was transferring over my 256K modem, I was thinking
“This can’t be for real. Nobody would let you freely create content for their
proprietary game.” I installed DEU, loaded up E1IM1, and removed one ofthe
walls. Run the perverted EIM1 in the game and . . . “Oh my god! I can make
my own Doom levels!” I was forever hooked!

I then spent every waking hour of the next six months making four new
Doom levels, which I uploaded to CompuServe’s Action Forum. These caught
the attention of both Q Studios, then working on Blood for Apogee, and
Apogee themselves. I was hired as a contract level designer by Q Studios and
worked for them for almost a year. I was then asked to work on Duke Nukem
3D full-time and came to Dallas, Texas, where I’ve been ever since.

ty

Introduction to Level Design 13

How has the position of the level designer changed in your opinion, as teams and
budgets get bigger?

When I started, the level designer was responsible for many different tasks.
These included geometry, asset placement, gameplay, player flow, lighting,
balancing, scripting, and some texturing. Now, everything is far more com-
plicated. Most ofthese tasks are now specialized and performed by one per-
son or subgroup of level designers. The role of the level designer is just as

important, the position just requires more people to do it, and they need to be
more specialized.

It is very similar to a movie. Watch the credits in a 1930s—1950s movie.
They're scrolled by in less than a minute. Now there is enough time to play
two or three full songs as the thousandsof people’s names go by. I expect the

game industry will grow in this fashion many times over in the coming years.

Conversely, do you think the quality and sophistication of level design have in-
creased with the scope ofgames?

Absolutely! The quality and sophistication are incredibly evolved, and that has
broadened the level designer’s scope. Just reload one of your games from five

years ago . . . even two years ago. It’s hard to look at it and remember thatit
was cutting edge in its time.

Do you see any standards emerging in the design and construction of game
spaces? Are there tools, or a language, common to level design?

Standards are still ephemeral. They will emerge, such as tool sets and asset
pipelines, as one game becomes popular and their way of doing thingsis in
style. For instance, the Quake tools were a standard for a long time. Now,
many level designers are using sophisticated 3D tools such as 3D Max and
Mayafor almost all game engines.

When you ask about standards, I presume you mean like in the software
industry where engineering disciplines are used such that individuals can
bounce from one application, project, or company to another with little re-
education. This sort of scale of standardization has not happened yet.

Can you impart some critical lessons you've learned in your career so far?

Yes! . . . making games is not fun-and-games, . . . it’s work-and-games! “Tis

true, it’s a dream job and I would not replace it with any other career. How-
ever, it is not the same as playing games at home and thinking you're the next
great game designer. It is also notlike sitting at home and making mods and

—>

14 Game Level Design

such. It is, in fact, long hours of sometimes very tedious work.It is months, attimes, of 12-14 hour days, 6-7 days a week.It is coordinating with the egos ofother teammates, and meddling producers and publishers, and the press thatat times can be brutal, and fellow developers. Your creative juices are mostoften sucked into someone else’s sponge. Thereare heartbreaks, with monthsof work thrown out, never to be seen by anyone again.
For someone wanting to land a level design position today, what sort of stepsshould they be taking?
There are a few great ways to enter, but you MUST make sure you really wantto do this. I will warn any poser ofthis question that simply by asking thequestion makes me suspicious. Even if I had not started in 1994, you wouldnot have to tell me how to get hired today. The hunger, the true desire, wouldhave me looking under every rock for a niche to fit in.

This is what I would do, this is what I did in 1994: Find a game you enjoyplaying that allows accessto level editing. Most games do. Make some levels,Playtest them well! Get a Web page going to exhibit them. This is a portfolio.Get feedback from people (friends and others that have played your levels).When you think you are polished,start emailing companies and keep an eyeout for job offerings.
There are also somevery good schools today,ifyou can afford thetuition.Southern Methodist University, for instance, here in Dallas has a great pro-gram setup by many ofthe leading local developers.

2 : Building a Simple Level

=" = |} | 7 7)

RRLnnnae

16 Game Level Design

In This Chapter
® Level Design Building Blocks
® What About Story?
B Putting It All Together
® Summary

of what wecall a level, then go through an example of how they are intercon-I this chapter you will learn about the most basic and most critical components
nected and what part they play in defining the user experience.

LEVEL DESIGN BUILDING BLOCKS

Before we go too far into the details of level design, let’s consider whatthe basic el-ements in a level are. The “building blocks” we need are these:

Concept
Environment to exist in
Beginning
Ending
Goal
Challenge to overcome between the player and the goalReward
Way ofhandling failure

As simple as it may seem, those are really the only essential items for a level. Sure,it’s not going to cover what might be needed for a next-generation shooteror role-playing game, but generally you won’t need new or different elements for big titles,you'll just need more of everything—more goals, more challenges, and frequentlymore than one ending.
As an exercise, think of a game—it could be your favorite video game, boardgame, card game, or puzzle. Generally, you will find all these elements in it. Try tobreak the game you're thinking of intoits component parts. If you use a video orcomputer game, watch for the different quantities and importance put in elementsfor each of the levels.
Later in the book we’ll talk more about “high-level” concepts like difficulty andflow, but for now these basic components are of the most interest to us, because if

Building a Simple Level 17

any are missing, the level will almost always be incomplete. You can have a great
level with great flow, butif there’s no challenge, it won’t be fun at all.

In Figure 2.1, we see a screen shot from a classic Tetris-style puzzle game. The

gameis divided into rounds where the player has to interlock falling shapes to for-

mat a certain number of lines stretching from one side of the game screen to the
other. In this respect, we can measure a level in this game against our checklist of
basic requirements:

Concept: Find a place for the blocks or lose the level.

Environment: The active play area to the left of the game data. |

|

Beginning: The player starts with an empty screen and a score of 0.

Ending: The level is over when the player either creates the correct number of
vertical lines (success) or the blocks pile up to the top of the screen (failure).

Goal: Create a number of lines that meetthe target requirement for success.

Challenge: The speed of descent, type of blocks, and number of lines needed.

Reward: The player moves to the next level, or receives a brief animated

sequence.
Failure: The game ends and must be started from the beginning.

Taya]

FIGURE 2.1 The level building blocks as seen in a

simple puzzle game.

18 Game Level Design

WHAT ABOUT STORY?

You mightbe thinking to yourself, “Shouldn’t a game, and therefore its levels, alsohave a story?” Well, the simple answer is no—it’s not a fundamental requirement,A story can enhance a level and give the players information about what they are ex-pected to do, what they might need to avoid or seek out, and so on. However, manytypes of games exist without a narrative element, and leave it to the playersto cre-ate a story if they really need one. Chess, for example, has elements of medieval warand politics—castles and knights and bishops on a playing field eliminating eachother. However,the game can be played with colored stones, as with its ancientcousin “Go.” The battlefield element simply enhances the experience, allowing theplayer to fantasize on some level about being a general or monarch moving forcesinto conflict. But the gameplay needs no such background elements to be fun.
Similarly, many levels from titles such as Tetris, Frequency, or Rayman have noinherent story other than perhaps a thin veneer given at the beginning ofthe gameor in the manual. The gameplay is what drives games, and similarly, it is what drivesthe stages and levels within them. Ideally, a level will to some degree allow the play-ers to create a narrative as they play, even if it’s just a series of personal achievements.Later in the book, we will look at how level designers can express narrative el-ements or micro-stories in their maps through the use of audio and visual sugges-tions, and letting the playersfill in blanks with their own imaginations. A story doesnot need to be an epic to be entertaining.

PUTTING IT ALL TOGETHER

Now that we have a manifest of things we need to include, let’s go ahead and cre-ate a simple level to demonstrate how they all work together.

Concept

For example purposes, let’s say we're making a game to be played on a portablephone. The game is called Clownhunt and it involves the player controlling Crispy,a clown desperately trying to escape a maniacal ringmaster whose low box-office re-turns have sent him over the edge. The gameis a puzzle game, and each level takes
Up one screen, presenting the player with a challenge to overcome before moving tothe next screen, with each successive level being slightly harder than the one before.The controls are simple: The player can move Crispy the Clownleft and right,and make him jump while moving. This allows Crispy to leap onto low obstaclesand jump to avoid small enemies that can pass underneath him. Crispy can fallfrom any height without injury, has unlimited energy for jumping, and has no in-ventory or weapons to keep track of. The gameis as simple as can be.

Building a Simple Level 19

Environment

Clownhunt is set in a circus, so all the elements should be thematic if possible. Col-

orful backdrops and “cartoony” graphics should be present in the environment.
These become important as humorous elements to offset the grim theme of the

game—the player being pursued by a murderous ringmaster.
Technically, each level takes up the maximum space allowed by the screen’s

display. The environment consists of a static background image,a starting pointfor
the player,a visible exit he must reach, and whatever elements are available to help
him progress in the foreground. There is no on-screen information or heads-up

display (HUD) to interfere with the environment because the game doesn’t require
the player to keep track of lives, energy, or other game “metrics.”

For our demo level, the environment will be the Elephant House. The back-

ground of the level shows several dark cages, a concrete wall, and a single light hang-

ing from the ceiling, all of which are shown in the basic environment sketch in

Figure 2.2. The sounds of elephants trumpeting plays in the background along with

the game music and general effects as the player moves through the environment.

Coneg®T SKETLH —~ ELEPHANT +16uSE

FIGURE 2.2 The basic level environment.

Clownhunt always begins with the player on theleft edge of the screen, needing to

moveto the right side of the screen to exit. The entrance can be at the top, in the

20

Ending

Goal

Game Level Design

middle or at the bottom of the screen, depending on the level. Itis always repre-sented as a doorway through which Crispy runs. For this level, we’ll start the playerat a plain wooden door next to the elephant cages at the bottom left corner of thescreen (Figure 2.3).

ConeePT SKETLH —~ ELEPHANT +House

FIGURE 2.3 The entrance added to our sketch.

We need the exit to be far enough away from the entrance to make sure the playercan’t reach it without overcoming some kind of challenge or obstacle. For this level,we're starting the player at the bottom left part ofthe level, so putting the exit highup on the right (Figure 2.4) sets the goalfor the player. We'll also label it “Exit” inthe level itself to make sure the player knows that’s where he needs to go to moveto the next stage. The area around the door will detectif Crispyis touching it andend the level successfully.

The goal of every level in Clownhunt is the same—reach the exit. The final levelmight be a showdown with the Dante, the ringmaster, but for the purposes of thischapter that doesn’t matter. The important part is making sure the player has a wayto reach the exit and finish the level. For our game, the goal is made clear by thestory—an enemy pursuing the player makesit essential that the player keep moving,This is a narrative-driven goal, however. The Ringmaster will never actually appear

Building a Simple Level 21

(oniger SKETLH — ELEPHANT HouE

FIGURE 2.4 The level exit added to the map.

in the level or get Crispy, no matter how long he stands idle. The advantage of a goal

that can be applied to all levels is that there is no need to precede each stage with a

description ofthe objective, or keep track of different success metrics for each map

(such as enemies destroyed, coins collected, or whethera certain key has been picked

up.)

Challenge
This is the key to the player actually having fun in the level. We need to come up
with an obstacle to stop the player from simply reaching the exit, and provide a way

for him to overcome the challenge. We also need to make sure the challengeis the-

matic—thatit doesn’t strike the player as out of place or goofy for the kind of game
heis playing. Thisis called dissonance, and you will constantly need to avoid this as

a level designer.
As this is a gameset in a circus, having a puzzle involving a seesaw might not

seem too out of place, so let’s run with that idea.
The seesaw is a useful challenge for a number of reasons:

m We need a wayfor the player to gain height to reach the exit.

It is immediately recognizable by most players.
® How it worksis apparentjust by looking at it, so we don’t need to explain to the

player how to use it.

22 Game Level Design

So let’s go ahead and put it on the floor of ourlevel design sketch (Figure 2.5).We can make the pivot point a large circus-looking barrel and the moving part aplank so thatit fits into the background.

ConegPT” SKBILH — ELEPHANT Hove
FIGURE 2.5 The challenge element added—a balancepuzzle using a seesaw.

Determining the Challenge Mechanics
Now that we have the puzzle, we need to add the mechanics that will allow theplayer to interact with it. Usually, when we talk about a puzzle or challenge in alevel, we can break it down into different sorts of mechanics—a mechanic is sim-ply the functionality behind each puzzle or game element. The mechanics behind adoor are simple for most games—activate a door and it will move a certain direc-tion on one axis, usuallyits hinges, just as it does in real life. Players should have noreason to believe a door would behave otherwise unless they were led to believe soby prior knowledge, a prompt from a character, or a visual clue. The best gameplaymechanics are those that need no explanation, allowing the player to simply workout how to interact with them from his own observations. This makes the playersfeel clever and allowsthe designerto stay out ofthe picture while they play.

Building a Simple Level 23

So how can the player use a seesaw to propel Crispy up to the exit platform?

Obviously, he’ll need something heavy to drop on the opposite side of the seesaw,

which will make his side move up and give him the height needed. There are sev-

eral ways we can introduce this weightto the player and allow him to interact with

it, a few of which are illustrated in Figure 2.6.

a =,

SEE-SAW)
Rope LATCH

(ore T someMon?) (TewsER PLATFORM) (useacs2 >

FIGURE 2.6 A suspended weight, a weight on a triggered

platform, and a weight alreadysitting on the seesaw.

In the example, only one option will work for us. The suspended weight would

workif we could shoot or throw something sharp at the ropeto cut it, dropping the

anvil down onto the seesaw. However, the design of Clownhunt doesn’t allow the

player avatar to be able to do anything but move from side to side and jump. Like-

wise, the option of having the weight on a platform triggered remotely by a lever

won’t work either. Obviously, Crispy doesn’t have an “interact” action to use the

lever. We could allow the player to simply bump into the leverto drop the weight,

but then it would cause difficulties allowing the player to be on the low end of the

seesaw and trigger the weight at the same time.

Putting the weight on the seesaw seems the most advantageous. This way the

player needs to work out how to use the seesaw to throw the weight up and then use

the resulting impact to propel the avatar to the exit (Figure 2.7)

Fortunately, this mechanic needs little explanation. Gravity is a known concept

for players, and they can reasonably expect thatif the weight goes up, it will also

come down. We don’t need to clue players into the puzzle ourselves—it’s all self-

explanatory.

24 Game Level Design

See SA Puzzle
FIGURE 2.7 Creating gameplay around the puzzleelement,

A relatively logical solution for the player right now is simply to jump on thehigh part of the seesaw and wait as the opposite weightflies up and comes smash-ing down. In real life, this might end up breaking the seesaw,or the weight may notland whereit started. However, this is an example of “game logic.” Game logic iswhere the player can reasonably expect that certain situations or objects will bemore predictable than might be the case in reallife.In Andrew Rollings and Ernest Adams on Game Design, the authors explain thatknowledge gained about the game from within the game itself, is called intrinsicknowledge. Conversely, knowledge applied in the game but gained from anothersource, usually real life,is called extrinsic knowledge. In the case of the seesaw, thePlayer is using his extrinsic knowledge of how that object worksin the real world totackle the problem facing him in this level.
In the case of the seesaw, most players will assume they can use it to get up to

Building a Simple Level 25

we'll talk more about scripting in later chapters, but a very simple example of

level design scripting is creating simple rules for in-game objects to follow to react

to the player’s actions. Often, you or the game designer will give these rules to the

programmers to implement when they code the object. In other instances, you will

be able to implement rules like this yourself on a level object through some kind of

editing language.
An example ofa rule we could set for the seesaw is this:

Multiply the distance the weight goes up by the number offeet the player charac-

ter falls before landing on the other end of the seesaw.

With this rule in place, the next questions is, What will the player jump from?

If we assume Crispy’s jump height is fairly low, then jumping onto the plank from

the ground isn’t ideal. We probably wantto include a low platform for the player

to jump onto the seesaw from. We can put in a small stack of obstacles nextto the

seesaw that the player can climb on top of and jump down from. At this stage, what

the obstacles are isn’t important, butit is critical that they are low enough for the

player to jump up onto them, and stacked high enough that they offer various

heights to jump from so our rule has some effect on the weight at the other end of

the seesaw. For thematic reasons, however, we can makeit a stack of crates with the

words “Elephant Snacks” stamped on the sides, shown in Figure 2.8.

A

| =
FIL=ELEPHANT HOUSE

OS
|

Congr SKE
FIGURE 2.8 Crates will allow the player to gain height for

his jump and propel the weight higher.

26 Game Level Design

The challenge is now complete—using simulated real-world reactions, a leverin the form ofa seesaw is weighted at one end. The player must work out that heneeds to climb a nearby stack of boxes to jump onto the otherside of the lever, cat-apulting the opposite weight up and sending him flying when it hits the seesawagain. Simple, easy to understand from visual observation, and effective enough toprobably require more than one attempt bythe player to get it right.
Reward

Failure

The last critical part ofthe design is whatto do when the player fails the challenge,or fails to complete the evel. Luckily for us, all of thisis handled inherently. Wedon’t have a timer or any kind of over-arching challenge that might end the gamebefore the player manages to finish. We don’t have health, so falling from any kindof height won’t end the level. There are no expendable resources or parts of the levelplayers can waste and put themselves into a no-win situation. Falling from the stackor seesaw simply means the player has to get back on the crates and try jumpingonto it again. Simply put, there is no chance of failure in this leve].This does bring up an interesting point, however, and one that you shouldkeep in mind as long as you design experiences for other people: The more the play-ers can blame you, the designer, for failure, the easier it will be for them to simplystop playing. Ifa playerfails and can only blame himself, there is a greater incentivefor him to try again. You should only set the players back, or force them to reloadwhen absolutely necessary—letting them climb back up and try again, or trans-porting their units back to a neutral location after getting killed by an ambush, forexample, is always a better option. This point will come up several times in thisbook becauseit is one of the most important rules of creating game levels.

SUMMARY

Although there may be many, many different types of game genres, almost aj] sharethe same basic requirements for the individual levels that make up the game.Knowing what these building blocks areis critical to knowing what makes a good

Building a Simple Level 27

level. In this chapter, we covered these foundation concepts and went through the

process of making a level that uses all of them fora virtual cell phone title. Some key
lessons illustrated in this chapter are the following:

® The more players can complete a challenge in a level by simply interacting with
it and observing the results, the better they will feel about overcoming it. If you
need to resort to prompts or special mechanics to allow players to complete

your puzzle, you will risk removing them from immersion of playing your
level.

® Sometimes simply finishing a level can be a reward—there doesn’t always need
to be fireworks or an exit guardian to defeat for the player to feel like he has
accomplished something.

® Try not to let the player be in a position to blame you for his failure. If you give

players all the tools they need and don’t impede their abilities to learn from
mistakes, they will be much less frustrated with failure. Even better, eliminate
the need for failure at all when you can.

3 Team Roles and the
Pipeline

29

30 Game Level Design

In This Chapter
Development Teams
Management
Design
Art
Programming
Audio
Other Development Roles
Team Setup
The Pipeline
The Unarguable Benefits of a Solid Pipeline
Pipeline and Technology
The Game Engine
The Game Editor
Pipeline as Defined by the Team
Summary
Interview with Hayden Wilkinson of KnowWonder Digital Mediaworks

of, game production. This chapter will explain in depth the major roles in a
game developmentteam, as well as describe the pipeline, or the way in which a

game is put together. Although not all ofit is critical to know when you are simplymaking levels on your home computer or even when making levels professionally, the
more information you have about who does what, and when, the better a designer
you will be. A level is made up of a huge number of pieces, and a hugeeffort from alarge numberof people. Let’s look at who all those people are and what they do.

Teens the book, we will be referring to many different rolesin, and stages

DEVELOPMENT TEAMS

You may be part of a commercial game development team, an amateur develop-ment group (also called a modification or “mod” group, creating a new game based
on the engine of an existing title), or simply working at home on levels for fun. Ineach case, you will experience different levels of responsibility and control over
your levels. Many variables affect who does what on a game team. Some companiesprefer a system that includes many managers and nondevelopment staff who helpkeep the project running and make sure the needs of the creative team are met.Other companies seek to keep management to a minimum with only a few leads

Team Roles and the Pipeline 31

and a single manager steering the ship. In somecases, level designers are required
to create all the art they will need for their own levels, in addition to designing and
building the actual environment. Some teams have level designers who design maps
in high detail on paper, and hand them over to others to build. In any case, there

are a few established “departments” that most game developers fit into. Let's look
at the common roles that make up the modern game team.

MANAGEMENT

A team needs business-savvy people who can guide the project through the rough
waters of developing a game, especially ifit is a game being made for clients with

very specific interests and requirements. Managers can be full-time, withlittle cre-
ative input into the game, but usually are somewhat involved with the look and feel

of the project. The smaller the team, the more “hats” everyone has to wearto get the

job done right.

Producers

Producers handle a role similar to a producer/director on a movie. They are the com-
munication link between production team members and the higher levels in the com-
pany—the executives, owners, and so on. Producers may give creative criticism about
the game, or even design parts of the game themselves. In very small teams, a producer

may also have the lead design role. Producers also handle the delivery of game content
to the client for review, creating “builds” or snapshots of the game in progress. In mid-
sized teams, the producer usually handles meeting team needs, scheduling, resources,
and making sure the demands of the client or publisher are met.

Project Managers and Assistant Producers

In a team where the producer is involved heavily in the design of the game, or
where there is simply too much work dealing with day-to-day problems, project
managers often take over the more mundane tasks, such as scheduling the team
members, motivating them based on performance and upcoming deadlines, and
handling individual requests (for new mice, graphics cards, etc.). When a team has
a project manager, he or she becomes the level of management that the team deals
with instead of the producer. Sometimes a project manager is called an assistant
producer,but the role is often exactly the same.

Creative Director

Unlike the other managers, creative directors are often shared between teams in
smaller companies, meaning that they serve as advisors, making suggestions and

32

Leads

Game Level Design

helping the creative staff realize the vision of the game, but often don’t create a lotof art or design themselves. Creative directors on larger projects are still part of themanagerial staff, but are dedicated to the vision of a single game. Often they willproduce documents and structures to make sure all the art and design staff mem-bers are working to create a unified “look and feel” to the game. Otherwise, withseveral strong artists on staff, each level in the game or each character could berendered with a very different style, resulting in an unharmonious look or feel tothe game.

When games require several people of the same discipline, the management mayappoint leads, who are members ofthe staff that straddle the line between develop-ers and managers. For instance, a lead programmer maystill program parts of thegame, but will also guide the programming team, attend management meetings toreport the problems and concerns of the programming team to the producer, andhelp schedule and provide his team with tasks. Leads are usually individuals withexperience or seniority who can be resources for members of their team whenproblems or questions come up. Common lead positions in the game industry arethe following:

Lead designer
Lead programmer/engineer
Lead artist
Lead level designer
Audio lead
Lead writer
Lead tester

DESIGN

We discussed the designer’s role in Chapter 1, but only briefly. The ideas generallycome from the design department of a team. If game development were like a pieceof self-assembly furniture, the designers would be the instruction manual. The de-signers conceptualize the game and create the vision ofthe game world. Designersalso provide the rules and systems that determine how that world works, what'spossible to do and not to do within it, and the activities and encounters that theplayer (or players) will face. There are several commonly found roles within the de-sign group: game designers, level designers, and system designers.

Team Roles and the Pipeline 33

Game Designers
Before a gameis designed,it is like a blank book. Game designers fill in the pages
of that book to make a document that describes the game to everyone else. Gener-
ally, designersare the folks who take a seed of an idea—it might be an original game
concept, or it might be a movie thatis due to be released in a year—and grow that
idea into a set ofrules, descriptions, and examples that will provide direction to the
entire team in what to create and how it will all work together. The main output of
game designersis the design document, which is all the game’s data combined into
one place. Nowadays, the concept ofa single document is becoming outdated, and
teams are putting the game’s design on internal Web sites (or intranets), which al-
lows team members to find what they need more quickly using Web browsers, and
edit or make comments on part of the design that they have questions about. Game
designers are planners, thinkers, and writers and often havelittle actualart or pro-
gramming game output.

Level Designers

These developers are special designers who, as we now know from Chapter 1, jug-
gle design, art, and programming skills to create the spaces where the player will ac-
tually be playing the game. We won't go into too much detail here because most of
the book explains their role and responsibility on the team. It is important to note,
however, that “ level design” is possibly the most ill-defined game job today. Some
level designers are responsible only for the design of the gameplay, with artists tak-
ing on the task of building, decorating, and populating the map based on the de-
signer’s specific plans. A similar role, that of “scenario designer” is common in

games where all ofthe level’s art is prefabricated and designers are involved mostly
in creating and scripting the complex missions of the game, especially for strategy
titles like Empire Earth or Warcraft 3. Sometimes scenario designer refers to indi-
viduals who do everything—design, plan, build, light, populate, decorate, and pol-
ish the map all by themselves. Level designers can work under either a lead designer
or a lead level designer if the team is large enough to need one.

Systems Designers

More recently, games have become complex enough thatit takes a specialized de-
signerto create the individual systems, rules, or scenarios of the game, but doesn’t
actually build any of the game content. For instance, a game team may have a

system designer handle the way combat worksin a fighting game. These designers
supplement the lead designer’s responsibility to work out the mechanics of the

game and document them for the rest of the team. As games become more com-
plicated and the ability for one person to adequately keep track of the design of a

34

ART

Game Level Design

game’s internal structure becomes more limited, systems’ designers will becomemore common.

The art team is responsible for everything the player sees in a game, literally. Fromthe install menu, to the final credits, as long as it happens on screen, the art teamhelped create it. This covers a huge numberofskills, roles, and responsibilities, asyou might imagine. Art teams are broken downinto several specializations.
Modelers

As games increasingly use more complex 3D graphics, the need for people to createthe myriad of people and things in the game world—to model them as 3D objects—also increases. Modelers are masters of turning out the props and characters that youwill use in your maps. Modelers work either from reference, concept art, or purelyfrom their imaginations to create 3D meshes for the game, often hundreds of them.Commonly, they will use commercial modeling programs (such as Alias|WavefrontMaya) to create their work, which is then brought into the gameeditor for place-mentin the levels.

Animators

Animators take the characters, and sometimes objects, that modelers make andgive them life and motion. For instance, in most games where players can see theircharacters, the animator needs to create a response for each of the character’s avail-able actions. When the player presses the jump button, the avatar plays an anima-tion of jumping into the air—an animator created this movement. Similarly, forevery action in the game, the animator makes a unique animation. Sometimes acompany may choose to use live motion capture, or mo-cap, where real actors dressin special suits that translate their movements to computers as animation data.This data still needs an artistto tune and edit the data before it can be used in thegame, however. Motion capture is popular because it provides many of the subtlenuances of human movement that are hard to replicate manually. However, mo-tion capture costs a great deal more money than a traditional computer animatordoes.
It’s not just living things that need motion. Animators often create animationsfor game objects that need movement—doors that open, or trees that sway, for in-stance. As computer technology improves, many of what we have traditionally usedas static objects in levels will begin to be animated all the time—trees, papers, cur-tains, grass, etc.

Team Roles and the Pipeline 35

Texture Artists
i

i
|
|
|Texture artists create the flat images (which we’ll discuss more in Chapter 10) and

effects, called textures or materials, that go on the surfaces of objects in the game.
Very often small teams don’t have unique texture artists—the modeler or anima-
tor handles the texturing of an object or character. For larger teams where the num-
ber of textures to be created is large enough, one or more texture artists are brought
in to help ease the workload for the modelers.

These artists use 2D image editing programs such as Adobe Photoshop to cre-
ate original art and use digital photos for the game. They also need to be well versed
in the 3D applications so they can actually map the textures onto models properly,
and test their work in three dimensions.

Texture artists also make the materials that level designers apply to the levels.
In this case, the designers are responsible for actually applying the materials onto
the level surfaces, and a great deal of communication is needed between a level de-
signer and a texture artist to make sure exactly the right textures are made to match
the needs of the level.

Special Effects Artists

Another specialized role,effects artists are all-round skilled artists who create the
special effects (SFX) needed for games. Manyspecial effects that cannot be created
by simple animation use whatare called particle effects in levels. This type of effect
uses, as you might guess, small objects called particles that can be generated when
needed, and destroyed after certain conditions are met. A texture or image is used
for each objectfor its appearance in the world. Almost any kind of effect can be cre-
ated with particles, and they are used extensively in games for things like billowing
smoke, flickering flames, muzzle flashes from guns, waterfalls, sparks, snow and
rain, falling leaves, or blood spraying from a hit location.

Many game engines feature very complicated, scriptable particle systems that
allow the usersto create complex and realistic effects. For this reason, effects artists
tend to spend part of their time creating art and images for the particles, and the
rest of their time fiddling with parameters and adjusting the properties of the effect.

Interface Artists

All games have interfaces—the layer between you and the actual game. When you
start a game there is always a start screen with options that allow you to begin a new
game, load an old one, choose from a selection of performance options, and so on.
When you actually play the game, there are elements that aren’t part of the game
world that show you specific information—we call this the heads-up display
(HUD), as coined by the U.S. Air Force for the kind of information overlay that
fighter pilots see superimposed on their view through the cockpit canopy. In games,

36 Game Level Design

the HUD usually tells the player how much health he has left, shows where he is ona small map, or displays remaining ammunition or turns thatare left.Interface artists create flat imageslike texture artists do, though they mayoftenwork in 3D modeling programs to create those images. Interface design is a veryskilled field that uses the science of “information display” to determine what themost critical information that the player needs to know is, and how to displayit ina way that is easyto see, yet won’t get in the way of playing the game. Many gamesstrive to remove the HUD completely, like Lionhead’s Black and White; however,very few games can get away with no on-screen information other than what isshown in the level. Even a game without a HUD will still need interface art formenus, pause screens, in-game systems such as inventory and character statistics,and so forth. The work of interface artists and level designers tends to be indepen-dent and there isn’t a great need for extensive communication unless each level willfeature a unique style of interface art.

Concept Artists

Concept artists work during the early part of the game, mainly in pre-productionwhere they help to visualize the look of the game—its locations, characters, objects,interface style, and so forth. Concept art is loosely done, and involves coming upwith lots of ideas atfirst, choosing the best direction from many and refining the re-sult in waves of concept drawings and sketches. It used to be that conceptual art wasdone via traditional means—pencil, pen and ink, or marker compositions. Morerecently, with the ease of programs such as Photoshop and Painter that can repli-cate all manner of artistic styles and media, concept artists often work electroni-cally. This helps to distribute, print, adjust, and even place concept art in a gameenvironment for evaluation quickly.
Occasionally, a concept artist will remain with a game team to help realize im-portant visuals and game encounters, but it’s rare. Most concept artists finish theirwork as production begins in earnest, creating a set of images and reference art forartists and level designers to work from.

PROGRAMMING

Programmers are the folks who make everything work on a fundamental level. Notonly do programmers create the technology on which the game runs—the engine,the renderer, the drivers that make the hardware work—they also create the toolsthat other developers use to create the content for the game, as well as program-ming individual parts of the game, from the behavior of a squirrel to the entireartificial intelligence (AI) system controlling whole enemy fleets. Let’s look at themajor roles in a game-programming department.

Team Roles and the Pipeline 37

Gameplay Programmers
This type of programmer works directly with designers and level designers to pro-
vide functionality and behavioral elements for use in the game. A programmer gen-
erally handles anything that the player needs to interact with or sees making
decisions on its own. Although the visuals of an enemy archer may be handled by a
modeler to make the character mesh and by an animator to give him animations for
moving, readying a bow,or firing at the player, a programmer puts these things to-
gether and addsthe intelligence behind the NPC that causes it to move, target the
fire, die when wounded enough, or seek help when outnumbered. As a level de-
signer, when you need a specific behavior for an existing game actor, or when you
need a new actor entirely for an encounter or situation you are building in a level,

you will work with most closely with a gameplay programmer.

Tools Programmers
All the tools you use when developing a level were created and coded by programmers
and engineers. In game development, the quality of a project is often influenced heav-
ily by the quality of that game’s tools. Animators need tools to adjust and import their
work into the game. Designers need tools to adjust the properties of the game, see
specific data, and make tuning adjustments to all manner of game elements. For level
designers, the most important tool is the editor, or the tools that allow designers to
build, decorate, script, and test their levels. Without good tools to do all of these
things efficiently and comprehensively, developers can’t work at their best.

Tools programmers, then, are responsible for creating, updating, and fixing the
game engine and tools used to interface with it. They may be split between game
programming and working on the engine, but these programmers usually work
through a game’s production to make sure the team gets what it needs, as needs
arise, and that new features are implemented based on the wishes of the client or
team leads. Tools programmers tend to work between projects too, updating and
refining the tools so that by the time a new game ramps up to production, the en-
gine has been improved a great deal and is able to use advances in game technology,
keeping current with the engines of competing titles.

Graphics Programmers
Modern games need eye-candy, impressive visuals that make the player want to buy
the title just from seeing the screenshots on the back of the box. Some games are so
visually impressive that dedicated “hard-core gamers” will actually purchase new
computer hardware or game consoles just to play them. Thus, programmers who
are able to get as much juice as possible from a game’s technology and the hardware
it will be running on, to makeit as visually appealing and graphically unique as pos-
sible, are crucial.

38 Game Level Design

Graphics programmers work somewhat in conjunction with level designers,providing the means for rendering visual aspects of a level such as textures and ma-terials, lights and special effects such as light blooms that make the screen fuzzyaround bright lights, or dynamic shadows that move around and react to the lightsin a level. In general, however, the major work of graphics programmers is benefi-cial to the art department and is filtered to level designers through tools that allowthem to use the graphics techniques properly.
Graphics programmers are also responsible to some degree for how a gameperforms, balancing the need for eye-candy with the need to run smoothly on mostcomputers and not slow down from trying to process too many visual effects.

AUDIO

The audio department is responsible for the sounds and music in a game, and byextension,all the aural effects in a level. Never underestimate the importance ofaudio in a game level; often it is one of the most critical components of atmosphereand emotion in a game map. Two major game audio roles are commonly found,sound designers and musical composers.

Sound Designers
Much like texture artists, who use their talents to modify real-life images as well as cre-ate materials from scratch, sound designers are responsible for creating audio tex-ture—adding authenticity and complexity to the level through the use of prerecordedor synthesized sounds as well as Foley—creating sound effects in a special studio fromscratch (using appropriate sounding objects and surfaces)as is done for film.Sound designers work from the documents that the design team creates. Yourlevel documentation will be reviewed by the audio staff for suggestions and clues towhatsort of sound effects or musicis needed. Although you may actually specify ef-fects that you need, skilled sound designers will generally extrapolate informationfrom your ideas and create sounds that suit the theme, setting, and practical require-ments of your map. For instance, if your real-time strategy level takes place in an arc-tic environment, a sound designer may decide to come up with special movementsounds for all the vehicles to play when they move over snow and over ice. The muf-fling effect of a heavy snowfall may inspire them to alter weapon firing sound effectsa little to make them more realistic. Ambient sounds might simply be arctic windsblowing ice crystals across the plains, or the occasional creak and crack of glacialmovement. Sound designers playa critical part in creating game environments andlevel designers should expectto interact with them a great deal during production.

Team Roles and the Pipeline 39

Composers
Musical compositions in games—full thematic scores, momentary “stabs” of heart- |

pounding music, and simple background ambient music—are all put together by
musical composers. The creation of game music differs less from that of cinematic
composition than one might think. Game music can be anything from completely
synthesized, computer-generated techno music to sweeping, symphonic back-
ground music played by full orchestras. Many games pursue traditional music over
computer-aided instruments when trying to capture a cinematic or classical feeling.

Level designers often get music as an asset that they can use in the map with
varying amounts of direction from the audio department. Sometimes a piece of
music can be used whenever and wherever it feels suitable, but at other times (or on
other projects) much of the music is written especially for specific parts of each
level, like a movie score. Either way, having a fully-fledged musical composer on the
team is a great asset and customized music for a level can add an amazing amount
of depth and atmosphere.

OTHER DEVELOPMENT ROLES

Other common roles will also intersect with level design but aren’t attached to par-
ticular departments.

Cut-Scene Artists

Cut-scenes, as we will talk about much later in the book, are simply miniature
movies created within the game itself, to relate critical story information to the
player, to force him to watch a situation unfold, or to give clues about an upcoming
challenge.

The people who make these interludes are generally a subset of level designers,
in that they work within levels as the backgrounds or sets on which the cut-scenes
are “filmed.” A cutscene artist doesthis by using special markers for game charac-
ters to move to, virtual cameras to switch views at key moments, and special ani-
mations to let the characters “act” appropriately. This is often done through a
special tool in the editor, or through a scripting language that allows them com-
mand ofthe level environment and the characters in it.

Level designers and cut-scene artists work in conjunction with each other to
create high-end interactive, and non-interactive, experience in the level.

Writers

Game writerscreate the narrative thread of thetitle, as well as handle incidental di-
alog (conversations between two thieves that a player might overhear, for example),

40 Game Level Design

writing voice-overs for mission briefings, communications and mission failures,
and all other related in-game writing. In addition, game writers often create back-
ground information for the development team, including character descriptions
and histories, location information, and extra detail that helps level designers cre-
ate more authentic or appropriate environments and encounters.

Writers work closely with level designers and cut-scene artists to make sure the
storyline and narrative are consistent, that the player will be able to follow along
with the plot and identify with the characters, and that in general the game upholds
a high standard of writing quality. A team without a writer will usually fall back to
a producer or lead designer filling in and creating written content, which is not al-
ways a desirable situation. The art of game writing is still evolving because games
have mostly not developed full-scale cinematic storylines and in-depth characteri-
zations. As the industry grows, however, many writers are making the transition
from film writing to producing game scripts, which are very different from each
other in how they are implemented. Film scripts are the end-all-be-all of the movie
around which production revolves. In games, story is secondary to gameplay and,
as such, the game writer needs to make constant adjustments and refinements
based on what goes in, what gets cut, and what written situations are discovered to
be too expensive to produce within the game engine.

Testers

Once a game starts to shape up and playable levels are being made, the testing team
is brought on to identify “bugs”—problems in the game that range from graphical
glitches like missing textures, to high priority “show stopper” bugs that cause the
game to crash completely, or allow the player to get stuck somewhere and not
progress, effectively killing his ability to progress.

Testers are dedicated souls who not only play the levels as they get made, they
try their hardest to break them. In this way,after playing through a leveltens, some-
times hundredsof times, the testing team identifies as many problems asit can, and
the team can release a bug-free gameto the public.

In very small teams, the testers may interact with the level designer directly. In
most teams, however, testers will submit bug reports to a special database that the
level designers access to find problems that relate to levels they are working on. In
this way, the relationship between tester and designeris very close, but little direct
contact is made between the two.

TEAM SETUP

Now that we have gone through all of the common members of the modern game de-
velopment team, let’s look at how these teams are set up to function at peak efficiency.

Team Roles and the Pipeline 41

Every team is unique, but we can use the categories of small, medium, and large
teams to show the kind of scale differences that can be found in the industry. The
numbers used as examples of how many people each sized team has are current at the
time this book is written; however, as time goes on these sizes are bound to increase
alongside the expectations of the players and the capacity of the available technology.

Small Teams

Small development teams of one to twelve need members to “wear multiple hats”
by performing more than one duty on the project. For instance, the producer may
also be the designer—one person handling both scheduling the team members and
running the logistical side of things while also creating the design document and
working with the team to oversee the creative vision. In small teams, communica-
tion between various members is easier and fewer large-scale reviews or informa-
tional sessions are needed. Small teams can change direction, respond to problems,
and rearrange the internal structure of the team more quickly if necessary. They
tend not to have leads, and management falls on only a few key people. The struc-
ture of a more compact game team generally results in a “flatter” command struc-
ture (Figure 3.1)—if one really exists at all—but the scope and size of the gamesit
can reasonably tackle are also smaller. Independent games tend to go for a reduced
development group because of smaller budgets and no real publisher support.
Handheld games, Web games, cell phone games, and games for younger gamersall
steer toward fewer team members. Contractors often play a big part in filling out
the ranks of small teams, as well as part-time developers who work on elements of
the game for only a portion of the production process. In small teams, levels are
often created by whoever has the time or inclination, and level designers commonly
must produce large numbers of maps and create the assets for them, too.

Project Lead

Programming

FIGURE 3.1 An example of a small development team.

Mid-Sized Teams

The mainstay of game production is the mid-sized team. Usually, these teams are large
enough that each person on a team hasa single primary task, and regularly scheduled

42 Game Level Design

communication makes sure everyone knows what the others are doing. Medium-sized
teams tend to have small departments relating to the major areas of development—
programming, art, design, audio, and management—with a lead for each (Figure 3.2).
Given enough time and money, mid-sized teams can produce anything from a com-
plex Web game to a “triple-A” chart-busting game for console or PC. Mid-sized teams
also have a management layer that does not create content for the game but, rather,
oversees the production process and deals with the client. Independent games with
mid-sized teams generally already have a contract in place with a publishing client and
so can afford to pay the large overhead that comes with substantially more developers
working at one time. Sometimes contractors and part-time members are drafted in to
fill out the numbers but mid-sized teams range in size from about 12 to 35 full-time
employees and are the average size for most large-audience PC and console games.
Level designers in medium-sized teams are often responsible for a handful of levels
each, but are supported by the other departments for asset creation.

Producer

Project Manager

Ngai

Tester

FIGURE 3.2 An example of a mid-sized team structure.

Large Teams

In rare cases, games covera large enough scope, size, or expectation that a large
team of 35 or more is needed to meet the requirements of the client, or the con-
sumers. Large teams require the most specialization from the staff (this sized team

Team Roles and the Pipeline 43

is often where you will find SFX artists, assistant producers, and systems designers,
for example), often grouping them into smaller teams within the main production
group to handle specific tasks.

Large teams require a great deal of managementto organize and oversee the de-

velopers (Figure 3.3). Large teams are frequently employed in the production of high-

Producer

SSSElls
Producer

diel

Art Lead Audio Lead

Modeler BI [e[gl<g

[ele lc] [Tg BI(e[glcg

SD U(=g

Animator

Animator

Effects
Nadi

IESRNs | Tester

FIGURE 3.3 An example of a large development team setup.

Engine
Programmer

Engine
Programmer

Game
Programmer

erInle
Programmer

CiTelple
Programmer

Tester

JA\Ule lo]

Designer

Ja\¥Ts lo)

[BIS [elle

Composer

44 Game Level Design

budget flagship games for well-funded studios, such as HalfLife 2 or Prince of Persia or
for massively multiplayer (MMP) titles such as EverQuest, which need not only a de-
velopment team but also a group employed to make new content continuously, help
players in the game, and create events and in-game encounters (called the “live team”).

Level designers in large teams may only be responsible for one or two levels, but
can expect a huge amount of work and documentation in making them. Constant
communication is needed to keep everyone on the same page, and generally a level
designer enjoys dedicated support from one or more artists and programmersto
make sure all the content and functionality for the level are delivered.

THE PIPELINE

As wecan see, a game level is really made up of manyparts, all coming from differ-
ent people and departments within the studio, much like a modern factory line
(Figure 3.4). When the time comes to plan for how all the levels in your game are
to be built, a process has to be worked out to make sure the production goes
smoothly and everyone is able to work without waiting for someone else to finish
first. This is called the pipeline and it helps define

® Which team member is responsible for doing what tasks
The order in which those tasks must be done
How much time those tasks will take

FIGURE 3.4 The level designer is the end of the factory production line.

Team Roles and the Pipeline 45

To use the analogy of the factory floor again, there is no set production pipeline
that works for everyone. A factory that makes cars will create and assemble parts in
a different manner than does a factory making pies. In the same way, in the game
industry each studio, each team, each genre, and each individual title will have cer-
tain demands for the production process. Conversely, when a company finds a way
of making games that seems to work well in general, each following project works
from that standard pipeline. Further modifications are then made based on team
size, resources, engine, and platform for a particular project.

As a level designer, or a lead level designer, you may be called on to advise in
how your game is made; specifically, you may be asked for input on the role of the
level designer on your project, the amount of support needed, and the distribution
of levels among the support teams. When in the process of building a level does the
cinematic team get to work on it? When does the sound engineer get the map to see
whateffects he needs to make? All these questions need to be evaluated based on
project resources and limitations.

THE UNARGUABLE BENEFITS OF A SOLID PIPELINE

With so many decisions being made, and very often not enough communication
between developers, it is essential that the team understand the “big picture” of how
everything is meant to come together and, more specifically, that each team mem-
ber is clear on his role on the team. Given that most games are made with strict
deadlines and release dates, the biggest enemy ofthe level designer is time. The big-
ger and more detailed a game is, whether it be a platform game, a shooter, or a sim-
ulation, the more help the designers will need to create the levels, and having solid
pipeline allows everyone to work at the same time.

SIDEBAR

Megan’s studio has set upits pipeline so that the level designeris responsible for
creating the basic level, as well as adding the models and textures created by the
art team as soon as they become available. During the production ofthe level,
there is constant dialogue between Megan and her support artists about what
is needed, allowing them all to work in parallel. By the time the basic geometry
in the level is complete, she hasall the models and texturesthat she needs to fin-
ish it. While she is adding models, the audio designers and game programmers
are working on more specific content for her to add, and the artists move on to
her next map. The pipeline determines who works on what level so the pro-
duction schedule is well oiled and allows everyone to work at once.

46 Game Level Design

If you are building a level, you rely on the support of others. If the model or
code you need isn’t done, you may be forced to sit and wait. Likewise, if an artist is
sitting twiddling his thumbs because you have the map that he needs to texture,
you're wasting his time. It’s as simple as that, really. The worst thing for a producer
or project manager is if employees cannot get their work done for any length of
time, and are stuck idling as the next team deadline looms. Thisis the sort of thing
most producers have nightmares about.

SIDEBAR

At Greg's company, the procedureis for artists to place their textures and
models themselves, rather than have the level designer doit. This allows the
artists to do it right the first time, but unfortunately requires that whoeveris
changing the level have it open on their computer, preventing anyone else
from working on it. This wouldn’t be a problem, except that level designers
are scheduled to work on their maps until they have been finalized and re-
viewed by the leads before moving to the next level. Greg builds the level for
a few days, and then has to pass it off to the texture artist who spends several
days applying the materials he has made, and then givesit to the modeler so
she can place her decorations. During this time, Greg has little to do—the
next level hasn’t been finalized and heis unable to access his current map for
daysat a time.

The level pipeline should become a solution to a puzzle. It breaks down all the
elements and interdependencies of a game’s levels and organizes them over time so
everyone on the team can work in parallel as much as possible.

PIPELINE AND TECHNOLOGY

The technology used to make a game imposes the heavy pipeline demands—a com-
pany can often add more people or resources to a project in need, but an engine
cannot be changed halfway through a project without serious repercussions. Some
game technology will require more artists to create final levels, some will require a
greater number of programmers, or several different types of programming talent
to support the designers. Some games need fewer designers, for instance, a flight
simulator where artists do most of the environment based on real-world data.

Team Roles and the Pipeline 47

THE GAME ENGINE

The engine is what literally drives the game and allows the contentto exist in a form
that the player can interact with. Programmers and engineers put together the en-
gine to work on the target platform(s) and provide the functionality that allows
artists, designers, sound engineers, and other creative developers to add their work
to the game. Game engines are often composed of the renderer, which is the main
code that actually displays the visuals of the game, and the interpreter, which takes
all the lines of code created by the game programmers and uses them to run all of
the game’s systems and behaviors.

THE GAME EDITOR

The editor is the tool that nonprogrammers use to either create content for the

game or to importit into the game from other programs. Some editors are very
basic, allowing no real preview of how a level will look or play, requiring a level de-
signer to compile or build the map (compressing all the level information into a for-
mat that the engine can run and display in the game) frequently to see the effect of
changes or additions to the environment.

On the other end ofthe spectrum, some editors are fully functional programs
that offer features comparable to high-end 3D modeling and programming appli-
cations. UnrealEd is one such editor, and we will be reviewingit in more detail later
in this book. Some game editors allow level designers a great deal of control over
their maps, from scripting Al to fine-tuning the visuals of the map in real time to
anticipating technical problems and either fixing them or notifying the designer
when the levelis built.

As one might imagine, the kind of engine and editor used will very much affect
the level pipeline used by a team.

SIDEBAR

Say your team uses an engine that features a very robust scripting language
that allows the designers to create almost all the gameplay they require with-
out needing programming support. It might be decided to allow the level de-
signers to create much of the script for their level, reducing the needs for
gameplay programmers, but increasing the time needed for one designer to
complete a map. Most of the programmers would then be free to move onto
another project once the designers are comfortable using the existing code
and scripting tools to complete their levels.

48 Game Level Design

The sidebar is really just a simple example of how a game’s tools and technol-
ogy can drive the production process. However, many other factors will affect how
your game’s environments are made. The genre, the platform, the specific features
of thetitle will all call for different processes and different pipeline components.

PIPELINE AS DEFINED BY THE TEAM

Although the tools you use to make the levels play an important role in planning, an-other important factoris the designers themselves. The individual skills and abilities
of each designer play an important part in defining the production process. If the
level design team in the sidebar example was mostly from an art background, hav-
ing excellent scripting tools may not make a big difference. On the other hand, in-
stead of needing less programming support, they might need fewer artists if they canmake most of the assets they need themselves. It won’t affect the time in which a level
is made, but it may end up affecting the quality, or user experience. The pipeline
should reflect, and respect, the various talent levels, technical leanings, and training
level of the level designers as well as the other members involved in development.

SUMMARY

In this chapter, we discussed all the different types of people a level designer will
need to interact with when making a game. We also learned that game teams comein different sizes, having more complex hierarchies and spreading responsibilities as
teams get larger.

The concept ofthe level pipeline was discussed, including how it creates asmooth production process and allows level designers to work in harmony with
other development departments without wasting time or facing downtime while
waiting to get back into a level.

INTERVIEW WiTH HAYDEN WILKINSON OF KNowWoNDER DiGiTAL MEDIAWORKS

Hayden, you had been making maps long before you became a professional level
designer. What attracted you to making levels, and why is it something you felt
you wanted to do for a living?

Team Roles and the Pipeline 49

True, I had been making levels for about four years previous to me becoming
a professional level designer. I think what attracted me most to level design
was the opportunity to be creative. With level design you have the chance to
project your vision for the game in many different ways. For example, when I

began constructing levels it was up to me to design the layout and the experi-
ences the player would encounter; beyond that I would be responsible for the

environment, the lighting, placement of sound effects, enemy placement, and
yes, even the optimization. With so many different avenues available for me
to show my creative side, I just put it in my mind thatthis was the job for me.

How hard was the transition from making maps on your own time, for fun, to

making levels under the pressures of development—deadlines, bug fixes, client

changes, and everything that goes with making games?

I don’t wantto say it was really hard to make the transition, butthere is defi-

nitely a learning curve to contend with. For me, I felt like such a “new guy” in
the business that I kicked mycreativity into high gear to help make up for

being so new to the development process. Sometimes this would come back

to bite me, in that there were times when I would geta little too overconfident
in what I was creating and would get a visit from the producer letting me
know that there was not enough extra art or programming time needed for
such an idea. Someone new to game development needs to keep in mind that
a professional project costs money to make and that there are deadlines to
keep, for the team to get paid.

Asfor client changes, it’s just a fact of game development. Unless you end

up working with a studio that supports itself without the help of a publisher,
be prepared to make changes to your work on occasion. It’s because so many
eyes look at your levels, so many people with all of their individual ideas of
what would make your hard work even better; I had a bit of a time adjusting
to this. You just have to remind yourself you're working with a team now.

For me, fixing bugs is probably the most grueling part of the production
cycle a level designer faces. You spend maybe 85%of the time designing,
building, and putting on the finishing touches to your creations only to be
faced with an inbox full of imperfection, imperfection that must be fixed be-
fore the product can makeit to the game store shelf. When I was making lev-
els in my basement for fun, I would have never caught most of these bugs,
they were simply put off onto the poor guy that downloaded my levels.

QA/Testers, the guys who send meall the comments on how I overlooked a
collision detection problem or an out of place texture, are truly important to
the development process.

—>

Game Level Design

To sum it up, the transition from making “for fun” levels to “profes-sional” levels requires you to understand that this is a team effort and that its
going to take a lot of devotion and the ability, on your part, to accept criti-
cism. However, the light at the end ofthe tunnel is seeing your work enjoyed
by the people who playit.
When creating a level, whatare your priorities? What elements do you begin with
and how do you go from concept to design, and from design to finished map?
I have what I thinkis a simple set of priorities when creating a level.

First, I think it’s important for me to understand what the designer wantsfrom the level, and it’s my job to maintain thatvision. In maintaining that vi-
sion, one needs to know his or her limitations, those limitations being the
time frame allowed to complete the level, how far can one can push the tech-
nology given to create the level, and how much room is allowed for deviation
from the designer’s original idea.

Second, I wantthe level to be unique. When the player entersa level, es-
pecially one set far into the game,it needs to be cohesive with the rest of the
levels butat the same timeit needs to stand out from the rest. I like to try to
give the player something distinctive to remember in each level, whether it’sthe lighting/mood, the puzzles, or even the architecture.

My last and most important priority . . . Make it fun! This is, after all, the
one thing that keeps players glued to the screen. Now,it is up to the designersand writersto create a greatstoryline and characters, but the level designeristhe one who builds on all of that. T help create the game mechanics needed to
makea level fun and challenging, the unique environments for exploring and
setting the pace so the player can enjoythe all the game experiences one at atime with out feeling overloaded.

Going from design to the finished map can be somewhat complicated and
riddled with many different steps. Design itself is disorganized, so it’s up to usto organize all the different elements of the game in to one big ball of fun.Once I know what my priorities are,I like to go overall the concept art avail-
able to meat the time. After I have a good understanding of the environmentand game mechanics that should bein the final version of the level, I start towork outa basic layout on paper and begin to bring thisin to the editor I useto create game worlds.I like to work on one area at a time; I work out the
geometry, the lighting, and lay down temporary gameplay elements; typically,I end up revisiting these areas to fine-tune or polish the level. In professional
game design, at some point, usually before I am finished with the fine-tuning,

—y

Team Roles and the Pipeline 51

the level goes offto the QA department for testing. When this happensI end

up spending a lot of my time juggling high priority bugs and finallevel polish.

Often the best lessons are those hardest to learn. What sort of misconceptions did

you have about level design before you joined a game studio? What are the hard-

est lessons about designing levels that you have learned in your history of making
interactive environments?

For me, coming from the Unreal community, where the level building tools

were so easy to learn, I had the idea that I would be given a design and I

would create the level, put my own spin on it and be responsible for the whole

level. In reality, you have to work with a team. Now all I do is focus on the

gameplay, general look and feel of thelevel, and optimization. Before now, I

was doing everything myself.
The hardest lessons I've learned over my years in making game environ-

ments are mostly related to performance. I can’t count how many hours Ive
put into levels only to find out that it’s not running optimally on “normal”

machines (normal being what most people own). Many times I would go
overboard with trying to make the environment so unique, so detailed that I

was only making it hard for the player to enjoyit. There is a balance you have

to find in creating levels: it needs to be fun and look great but it also needs to
be playable on different machines.It took a little while and a lot of times I had
to give up what I thought worked great for the environment, butin the end,
it’s better for the player and your game.

What are the most important elements for a good level? Whatare the encounters

or experiences you try to include in your work?

Simply put, the most important elements to me are gameplay, storyline (not
for all games), atmosphere, and cohesiveness.

Some recent games have been made thatjust live off of their names; these

games start out with characters that you can interact with and they help to build

a story line, tension, and the urge to see what happens next. After you play the

game for a while, you begin to notice that the game slips off into a lull, and the

gameplay becomes stale and predictable. I would like to see more games that in-

troduce new characters and game mechanics at an easy-to-swallow pace, while

allowing me the time to experiment with new weapons or powers.
While gameplay is the most important element of level design, to me, at-

mosphere runsa close second. Thisis easily my favorite part of making levels.
I enjoy expanding on the designer’s vision by creating worlds that reach out
and grab the player and give them the chance to escape reality. I try to include

—

52 Game Level Design

unforgettable areas for the player to explore; this somewhat helps the playerto know where he has, and has notyet, explored in the level.
I've seen a lot of games that seem to enjoy thrusting the player off into

some entirely new sequence of gameplay or into an environment that seems
foreign compared to the previous levels of the game. I think the reason this
happens is because the level designer does not have a clear understanding ofwhat is needed with the level or it could also be due to the designer’s vision
not being consistent with the rest of the story/game. In eithercase, this could
hurt a game, and it’s the reason whyI always try to understand what the level
needs by collaborating with others on the team, such as the lead designer and
art lead.

Who are the people you most look to for inspiration, both in the field of level de-
sign and beyond, when working on a project?
Right now in the field of level design, I would have to say that the level de-
signersat Id, Ion Storm, Epic, and what was once Looking Glass Studios in-
spire me the most. Looking Glass made 1998 a good year for games by
creating Thief, the father of all stealth games. Companieslike Epic continue to
set the bar high in architecture, lighting, and effects, not to mention an easy-to-use editor and a huge community of fans willing to make mods. I can
always turn to these guys for inspiration.

Beyond level design butstill in the realm of designing games,Ilike peoplelike Yoshiki Okamoto (designer of Time Pilot, Gyruss, and 1942). He had a
smooth, if not seamless way of adjusting the level of difficulty while at the sametime keeping the game consistent and fun to play. These games that came from
those classic designers are what helped build the foundation for today’s games.
Hayden, what advice can you giveto the mappers and mod-makers out there who
are thinking about a job in level design?

From a professional standpoint, I would have to say that creating levels has
been a lot of fun for me and has taught me a lot about game development,but... be prepared to work hard and implement ideas you might disagreewith, as well as having some of your own ideas shot down. Understand you're
going to be working as part of the team; you're not a lone wolf anymore. Or-
ganization comes in handy when you're working on multiple levels and hav-
ing the right communication skillsis the most important advice I can give.

From an old community mapper/mod-maker view, tenacity is the answerto landing a job in the industry. Keep working away at your levels; learn all the
tools needed to be a well-rounded level designer. If you can make levels really

—

Team Roles and the Pipeline 53

well in Max or in Unreal, try to expand your knowledge to something like

Maya or maybe even brush up on your Photoshop skills. I don’t think you can

ever know too much about yourcraft.
Promote yourself . . . network,if you can, with others in the industry.

Make sure you have a clean and easy-to-navigate Web page with links to your
personal work and resume. Release levels to the public and encourage criticism

of your work; it will help you out more than you know. I also hear a lot from

others that I work with that a good level designeris up-to-date on things like

current events, technology, news, entertainment, literature; all these things
feed your creative mind.

4 © Basic Level Design Theory

55

Game Level Design

In This Chapter
® What Makes the Level Fun

Player Ergonomics—No Learning by Death
® Level Flow—Keep the Player Moving
® Rhythm—Create a Roller Coaster Rather Than a Highway
® Difficulty—Let The Player Win, Not the Designer
® Wow Factor—The Water Cooler Moments
® Hooks—Setting Your Level Apart|a Summary

Interview with Dream Smith of Griptonite Games

dation for most levels. These concepts are the basic theory of whatit takes toCreate an enjoyable user experience in a level.
Designing a level is a long process, mostly because so many factors go into

making an intensely enjoyable experience. A level that looks good will attract play-ers to it, but it won’t keep their interest for longif there isn’t anything fun for themto do. A fun level will keep only the most dedicated playersif it’s set in a series of
identical-looking concrete rooms, each lit by a single light bulb. A level that’s far too
easy, or far too hard, or where difficulty is wildly inconsistent, will not be played forlong either.

The point here is that to design a good-looking, challenging, fun, bug-free in-teractive environment, you need to be spinning many, many “plates,” making surethat all ofthe factors are within acceptable levels and trying not to concentrate on,or neglect, certain factors in lieu of the whole experience. A level designer needs tomake sure all aspects of the level are in balance (see Figure 4.1). This chapter willdeal with the beginning ofthe process, where you'll be making choices that will cre-ate a framework for therest of the design and construction process. In some cases,this information will simply be given to you, in the form of an existing documentor through verbal instructions by your lead designer. This is likely if you are join-ing a team midway through making a game, but it is uncommon that a level de-
signer is simply given a blind set of criteria and instructions and told to go make afun map—the twoare like oil and water.

One thing to keep in mind is the balance between fun and feasibility. Many ofthe best levels give the feeling of epic-scaled environments or that the player is
making important choices all the time. In the Thief series of games, for example, theplayer is always an unwitting participant in a struggle against evil, and the player isconstantly led to understand that his actions in the world will determine the fate of

I: this chapter, we’ll go overthe “high” concepts that provide the proper foun-

Basic Level Design Theory 57

FIGURE 4.1 Level design is about
spinning plates.

the world. Or, in Dark Cloud 2, the player must rebuild the world after it has been

ravaged by an evil force. This illusion of poweris almost always fakery. Your job is

to make playersfeel like they are in a believable environment, encountering believ-
able situations, and making believable choices, when really you are guiding them
through a world that’s only as big as what they can see or interact with.

It’s also important at this stage to get in the habit of analyzing your decisions.
The most unashamedly ambitious ideas are usually born at the beginning of pre-
production, especially in group design meetings where ideas can be borne aloft on
the enthusiasm of a room full of developers beginning a new project. It's important
that you judge the feasibility of your choices at this point and notstart out design-
ing a level that’s simply too ambitious to ever be made. This is not to say you can’t
be creative, but when you see a potential problem, or the possibility of a problem in

a levelat this stage, immediately changingit will take a lot less effort than realizing it

a week before the game’s alpha deadline. As a level designer, one of your responsi-
bilities is to make sure the level is not only built, but that it plays well and doesn’t
slow to a crawl whenever the player walks outside. If something about your level's
location or environmental settings makes you nervous, it’s best to deal with it now.

WHAT MAKES THE LEVEL FUN

The beginning of a new project is an exciting moment. The game is like a blank can-
vas, with an initial design framework or concept in place and the first seed ideas of

Game Level Design

your level, and you have a thousand ideas already that you wantto start working
on. However, tempting as it is to fire up the editor and begin building at this stage,
you mustresist. Before you even pick up a pencil and start sketching (which we'll
cover later in Chapter 7), you'll need to address some important concepts about the
foundation of your work to come. Thefirst concept is the most important one of
all. What makesa level fun to play? Although the game itself may have a lot of fun
things to do, what specifically can you,as the level designer, do to make sure that
the player has a great time in your map?

First, asking a game developer to define “fun”is like asking a chefto define
“taste.” In the end, it’s such a subjective concept—there is no true definition other
than what you know but cannot put into words properly. This is instinct—and as
a level designer, you'll need to trust your instincts so you can deliver the kind of fun
the game requires.

For instance, the fun ina first-person shooter (FPS) may simply be in success-
fully dodging your opponent’s shots while returning fire accurately and destroying
him. Much like tennis, the fun isin the give-and-take action that doesn’t end until
someone loses. It’s the kind of fun you feel with your whole body, actually physi-
cally moving closerto the screen when in combat, or jumping when an opponent
races around a corner in front of you.

Onthe flip side, a gamelike The Sims® is an entirely different experience for
fans. Balancing the needs of their avatar, trying to maintain an optimum level of
comfort, career, and environment, finally purchasing an item for their virtual home
that they had wanted for ages, or manipulating the complex social relationships be-
tween characters,are all fun yet entirely different from the fun of playing a shooter.

Instead of painting a bleak picture where everything is created from experimen-
tation and luck, there are indeed waysto determine how enjoyable and immersive a
game level can be—there are universal concepts in level design that you can learn to
identify and manipulate to create a fun experience for whoever your player is. In a
nutshell, these key concepts are the following:

Ergonomics
Flow
Rhythm
Difficulty
Wow Factor
Hooks

Let’s look at these concepts in detail and see what role they play in affecting the
player’s experience.

Basic Level Design Theory 59

PLAYER ERGONOMICS—NO LEARNING BY DEATH

One thing all designers share—whether designing gamesor designing desk lamps—
is that they must always keep the user in mind. This is especially important for level

designers to remember as they get deeper in the game and begin to lose sight ofthe
overall difficulty and scope of the game for the average player. If at any time during
a game the player is able to blame the level designerfor failure, rather than them-
selves, we've lost them. No matter how cool a level looks, no matter how bug-free or
polished the gameplay, if a level contains areas or elements that cause frustration for
the players, it will reduce the overall quality of the experience for them.

This concept is called player ergonomics—the act of identifying possible areas
of frustration in the level and addressing them to maintain a high level of comfort
for the player. Everything designed has a level of ergonomics. The book you're
reading has a font size that most people can read easily, porous pages to prevent
them sticking, and a spine to keep itall together. Without these elements, reading
it would not be impossible, but it would be a great deal more difficult. Likewise, I'm
sure you can instantly think of many examples of a game you really enjoyed that
suddenly presented a challenge so hard, or a situation so unfathomable, that you
put the controller down and turned off the console. This is often a case of bad
player ergonomics.

An illustration of bad ergonomicsis a level designer blocking some part of a

map by a never-ending stream of enemies. The designer realizes thatif the player
exits the level before they have destroyed all three generators, the next level (escap-
ing the powerless refinery) won’t make sense. With a deadline approaching, he
quickly sets up a group of spawn points nearthe exit to generate enemy guards. If
the player tries to exit, the guards will keep reappearing and denying him exit until
he either goes and destroysall of the generators or runs out of health and dies. He
explainsto the lead designer, “After dying a few times, the player will realize he just
can’t leave yet and will be forced to finish his objectives.” And the lead designer
replies, “At which point he will be throwing his console at the wall.”

Thisis also a great example ofa level flow coming to a grinding halt. The play-
ers may think thatif they can shoot X amount of guards they’ll win and be allowed
to end the level. The only way they'll realize it’s an impossible situation is by dying
over and over again and having it dawn on them thatthis is a completely artificial
situation designed to keep them from progressing.

Usually, this is an honest mistake. It’s quite common for a game’s difficulty to
exceed the ability of a player at some stage during play, or for the player to do
something the designer never thought possible. This is why play testing and Q&A
are vitally important—without the benefit of new eyes seeing a level, the designer
is at risk of committing ergonomically criminal gameplay that assumes the average
player will find only mildly challenging, or creating vast and complex events that

60 Game Level Design

can break at the slightest path deviation. As you gain experience asa level designer,
you will gain greater ability to see your level through the player’s eyes, and to an-
ticipate or isolate spots where the player may become frustrated. However, there’s
no substitute for having someone else play through your work and alert you to
problems that may have been invisible to you.

SIDEBAR

A great example of ergonomics is the game ICO for the PlayStation 2. In this
game, the player cannot kill the main character without intentionally jump-
ing overa precipice, and even then only after the main character catches him-
self and allows the player an opportunity to climb back up without dying. In
addition, early levels of the game are in enclosed rooms—there is no way for
the player to die and haveto restart, while learning the controls and becom-
ing accustomed to the game mechanics and amazing visualstyle. The player
is eased into the controls, the gameplay, the situations that will allow him to
fail at a smooth pace that, ergonomically speaking, is a great model of how a
game should begin—no learning by dying and restarting ad nauseam.

Later in the game, when the player is protecting another character, he can
leave her temporarily to scout ahead and solve puzzles to allow herto progress.
However, she is vulnerable while the player is not around and can be attacked
by creatures that appear out of the shadows around her. When this happens,
the player is given an audible warning (the princess shouts in alarm) and the
camera will quickly cut to her to remind the player where sheis. He is then
given a certain amount of time to run back and defeat the creatures. Thisis an-
other great example of ergonomic design—the needs ofthe player are catered
to, and he is given a fair chance to rectify his mistake without being punished.

Some hard and fast rules that will allow you to keep up the ergonomic quality
of your level are saving and reloading, giving clues, and being aware of the player’s
comfort level.

Allow Players to Save and Reload

Allow the player to save frequently. If this is not allowed by the game design, place
save points frequently or allow the player to recharge and restock after major en-
counters. Being forced to replay parts (or all) of a level multiple times before a

Basic Level Design Theory 61

player can finish it is one of the biggest complaints about games. No matter how
fun a levelis, it will get tedious if you are forced to replay it more than a few times
in a row. Don’t let this happen to your players, or at least give them the chance to
succeed. If they don’t stop long enough to recharge their health between fights,
that’s their choice and they can’t blame you, the designer.

.
Give Clues

Don’tlet players get lost. Try to avoid, at all costs, putting a simple maze in your
map, thinking it will be challenging to the player or extend the life of your level. A

maze where the player hasto solveit by trial end error is an exercise in frustration,
and will often simply result in the game becoming a “coaster” —the disk makes a
better drink coaster than a game. A player needs access to clues and information
about how to progress through a level when he is stuck. A maze that has a system
the player can learn, and use to quickly find his way through is a better option; for
instance, in the game Myst the player is shown an interactive compass that plays a
sound effect at each cardinal direction. Later, in a seemingly endless maze, the
player can listen to sound played at each intersection and using their knowledge of
the compass sounds, determine which direction they need to go. Other ways ofgiv-
ing clues are characters that will sell more and more obvious hints for increasingly
higher prices, or emails left on computers or notes on bodies that hint at how to
progress through a puzzle or obstacle. Players are free to ignore these, but doing so
relieves the designer of blame when they get stuck. A player will never accuse you
of being too helpful, unless you are blatantly telling him how to beat each challenge
before he has had a chance to work it out alone.

Be Aware of the Player's Comfort Level

This ties into the concept oflevel difficulty, which we will discuss a few sections
later. However, for the player’s comfort, always remember the rate at which the
player is learning your game’s many systems and rules. Don’t suddenly dump a
completely new rule on players with no warning before they’ve even worked out
how to fire their secondary weapon or jump consistently.

An example of ergonomic oversight in this area is Daikatana. Although this

game does have many interesting features and solid design elements, one of the
things that put many gamers off was the introduction of very challenging enemies
(in the form of hard-to-target flying mosquito robots) in the first level. This wasn’t
simply a matter of difficulty—small, fast-moving flying opponents are always chal-
lenging to hit when you’re using a mouse or console controller to aim. Putting them
in the level where the player is getting used to the controls, how the weapons handle,

> «and how the rules of the game work is a violation ofthe player’s “ergonomic rights.”

62 Game Level Design

LEVEL FLOW-KEEP THE PLAYER MOVING

Players can suffer “disconnects” in many ways—when they reach a point in the
game where they are suddenly dumped back into the real world, or the fun drops
to a point where it’s no longer worth the time to playit. The former problems can
often come about from a lapse in ergonomics. The latter problem—the game going
from fun to tedious—often occurs when a level’s “flow” breaks down. Flow and
rhythm are deeply connected concepts, and hard to separate concretely, but we will
try to do so with the next two sections.

Dissonance and the Importance of Believability
The concept of “level flow” is admittedly nebulous. There are a lot of definitions
floating around, but generally, the level designeris the invisible hand guiding the
player through each environment in a game, sometimes by pushing him to go
through a certain doorway or defeat a particular challenge, and often by subtly
pulling him along by using lighting, sound effects, item placement, and other “bread
crumbs” (a term that comes from the old fairy tale of Hansel and Gretel, where two
lost children left a trail of bread crumbs behind them that would guide them back
home when they got lost). In either case, the more aware the player is of the level de-
signer’s influence, the less fun the level will be,just becauseit’s obvious that things
have been engineered to happen artificially. Naturally, a lot of game experiences are
engineered by the level designer; however, the player will quickly noticeif the same
sort of event is recurring a lot, or will easily spot something completely out of con-
text such as a stack of explosive barrels in a supermarket parking lot. This feeling that
something is out of place is called dissonance and can be a very effective tool for cre-
ating tension or creeping the player out, but only when used sparingly, which we’ll
discuss in later chapters. A great deal of dissonance, like a row of toilets in a kitchen,
will bother the player enough to question his surroundings unless the level’s theme
is a dream-like or nightmarish place where reality is skewed. Silent Hill and its se-
quels all rely on constantly having the player question the reality of his surroundings,
or the creatures heis fighting, and it works brilliantly within the context of the game.
However, sticking a Silent Hill level smack in the middle of a Mario game will prob-
ably not be the successful juxtaposition you'd hoped for when the gaming public
triesit.

Another very obvious way to create bad flow is physically blocking the player,
or making him perform complex maneuvers for what should be simple tasks. A
very crude example is a series of alcoves along a corridor in a shooter game, each
containing a single clip of ammunition. The player will need to move into an alcove
to pick up the ammo, back up or turn around and moveto the next alcove, and re-
peat this several times to pick up the same amount of ammunition the designer

Basic Level Design Theory 63

might have allowed him if the clips were placed along the center of the corridor, or
in a group in a single alcove. This doesn’t seem like such a big problem in a slower-
paced game, but in a furious action game, every second counts. Ask any serious
Quake 3 player—these folks will buy graphics cards for hundreds of dollars just to
get an edge over their online competitors. Flow in an action gameis a serious mat-
ter, and the flow of a player through the environment becomes much like designing
a racing car—you need to think aboutit like aerodynamics, allowing the player to
run through the map picking up items and weapons, attacking and retreating, cap-
turing the flag, or whatever he needs to do, without having to weave in and out of
pillars, stop to jump up on crates (Figure 4.2), or pause to enter a code on a door
to open it. Often forcing players to perform tedious tasks in a level is simply mak-
ing them jump through hoops.

FIGURE 4.2 Stopping to jump on crates in an action shooter can be a flow-breaker.

Naturally, if you are creating a level for a platform game, players will be ex-
pecting to jump on several difficult-to-reach ledges to collect certain items. That’s
what they're paying for. Be aware of what flow means to your game, and design
your level for that. Adventure gamescan suffer from too many irrelevant action se-

quences, but they also suffer from puzzle after puzzle with no break in between, for
example. This is why games like Myst place “whimsical” items or interactive objects

64 Game Level Design

in the game levels for the player to play with, allowing them a mental break between
logic puzzles, and the chance to simply see something cool.

The Constant Danger of Boredom

Dissonance or jumping through too many hoops is only one occurrence that can
break the flow. More commonly, it’s simply a matter of the player becoming bored.
Don’t assume that boredom is only caused when the player isn’t doing enough to
be entertained. A player can often become bored by doing the same thing for too
long, even if that thing is something we developers consider exciting. Shooting
things and having them blow up is a mainstay of the gaming culture. However, very
few games where players do nothing but keep their fingers on the triggers and see
things explode will keep their attention for more than a few hours. Boredom can be
categorized into two basic forms:

Mental boredom comes from seeing the same things, hearing the same sounds
and music, or playing essentially the same gameplay repeatedly seemingly with-
out end.

Physical boredom comes from a lack of interaction or physical movement. If
players are simply watching the same 10 pixels on the screen, if they are holding
down one key for minutes at a time, or are so disengaged that they become
aware they're sitting in an uncomfortable chair for hours, they will become
bored.

SIDEBAR

An interesting example of potential boredom can be seen in some older ar-
cade games designed to keep players’ adrenaline pumping so much that they
would feelthe need to keep shoving quarters in the machine to keep the ex-
perience going. For example, Robotron, the classic action shooter by Eugene
Jarvis, dropped the player into an unwinnable situation from the start—in
every level, a greater number of more powerful enemies advances on the main
character. The playeris forced to shoot constantly and keep moving or he will
quickly find himself surrounded and ultimately out of lives.

For an arcade machine, thisis a perfect formula—the gameis so insanely
difficult that a play session forthe average player will only last a few minutes,
requiring a new quarter to continue. Thisis great news for the arcade owner,
who is emptying the coin box every night, but in reality this sort of game

—>

Ce
TTT.

Basic Level Design Theory 65

quickly gets boringif the player can just continue to play whenever they die.
Take away therisk of restarting the entire game each time you lose your lives
and there becomes little point in playing it for more than an hour—there’s so
little variety of experience that the game cannot maintain the attention of a
normal human for long enough to be worth paying $40 for.

Recently, a shareware game called Crimsonland brought the gameplay
of Robotron to the modern gaming public. However, rather than simply re-
creating the arcade experience, the developer included many boredom-
relieving features: powerups, gaming modes, choices to be made during levels,
different waysto control the main character or to aim—all these elements al-
lowed a better flow and a bigger variety of experience—mental and physical—
to the game, making it a much more viable candidate for longer play sessions.

How do weprevent a player from getting bored in a level? We drive him ahead,
like a sheepdog herds a sheep—through subtle temptation, direction, and the threat
of a painful bite on the rearif they don’t do it right. Many times a level designer
must lead the players through the environment or push them in a direction, but at
all times the players must be driven or the game will become stagnant, with the
player left wondering or searching for what to do next.

Ideally, players will be driven through a level by a combination of many ele-

ments. A light illuminating a doorway at the end of a corridor, a conversation over-
heard below them, an imminent explosion behind them, or even a simple timer
ticking away in the corner ofthe screen (though this is dangerously close to be-
coming a game design stereotype, the player racing against a disembodied timer on
the game’s interface). In all these cases—and throughout the level—a player has to
want to progress. Flow is created bystringing together a long a series of interesting
encounters, revelations, and rewards for players. Unfortunately, it’s much easier to
kill the flow than create it. Laziness or neglect of “unpopular” areas of a level can
often kill the flow. If both directions at a t-junction seem equally intriguing to play-
ers, you cannot punish them for picking the wrong one by simply making it a long,
boring dead-end; not only is this a case of bad ergonomics, it’s a serious break in the
flow ofthe level. Forcing the player to backtrack through a level can be an interest-
ing game element ifthe level has changed sufficiently in the meantime orif there are
new challenges on the way back. Making both of those directions eventually lead to
the same destination—perhaps with very different challenges or experiences en
route—keeps the flow going. However, simply forcing the player to go from one
end of the map to the other constantly, spending long minutes simply trudging
through the same space every time, will surely reduce the flow to a crawl.

Game Level Design

When wetalk about flow in general game and level design, it’s not just the flow
between the start and end of a map. It’s also the parts in between. Whether your
game will use cinematics to illustrate the transitions between levels, or each level
will load immediately after the next, the continuity of atmosphere and the player’s
sense of place must remain continuous. If the player reachesa critical goal in the
center of the map, and then the next thing he knows, he’s back at HQ getting
briefed on the next mission, thereisa significant disconnect. You might want to ex-
tend the level to have the player reach an escape point, or at the very least a cine-
matic showing the main character leaving the level environment bound for home.

SIDEBAR

Imagine a level in an abandoned military complex being used as a base by a
local gang of werewolves. The long-dormant shapes of military robots create
shadowsin the gloom ofthe torch-lit interior in which the player can hide and
snipe his unsuspecting prey on his way to the level’s sole objective—activate
the generator on the bottom floor of the complex. The way into the objective
is a milk run, with lots of sniping and unwitting guardsto run up to and dis-
pose of with a variety of weapons.

The player reaches the generator room easily and completes the proce-dure to get it back on line. It humsto life, lights flicker on, and the player
leaves to head back upto the exit. As he reaches the doorway, however, the
screen shakesa little and the rhythmic sounds of thumping can be heard from
above. That would be the sound of several long-dormant military robots
warming up their Gatling guns and resuming their patrols. The player mayhave completed the objective successfully but the level is far from over. By
completing his primary goal, he just reactivated the base’s interior security
systems. Though the level architecture remains the same, the player is now
faced with a completely new challenge—getting outof the level will require a
great deal more skill than getting in. The player’s weapons are no good against
the armor-clad security droids, and he must now formulate a plan of avoid-
ance and distraction. Changing the gameplay topography of the level has
changed the flow ofthe level and given the player a whole new reason to fin-
ish the level as quickly as possible.

Simply having players walk back through five minutes of empty corridors and
the bodies of previously slain enemies is simply going to bore the player. There’s no
draw in progressing, and when the draw ends and the player doesn’t want to move
forward, the flow is dead.

Basic Level Design Theory 67

RHYTHM-CREATE A ROLLER COASTER RATHER THAN A HIGHWAY

Flow controls the player’s frustration, and along with rhythm, keeps players from
ever feeling so disconnected or negatively jarred out of the gaming experience that
they don’t want to play anymore.

Rhythm is a way of expressing the pattern, frequency, and intensity of the se-

quences of events in a level. For linear levels in simple games, it’s easy to control
rhythm, but for more open-ended and organic game environments, it can be nearly
impossible to exert a lot of control. However, we know that a game level is gener-
ally a series of events and experiences, regardless of whether we choose the order in
which they happen or the player determinesit. We have to then allow for a range
of experiences to keep players interested.

In almost all forms of entertainment, the rhythm of events is used to draw the
audience in, to set up expectations, and to deliver surprises. A horror novel where
the protagonist simply walks through a bunch of mildly creepy corridors for the en-
tire book without encountering a single obstacle or creature is not going to have

many readers. Neither would a war drama where the hero hides in a barn for the
duration of the conflict, emerging only after the armistice has been signed. In both
these examples, there is a recognizable element of storytelling, but it is the only el-

ement throughout. To create tension—if only in the player’s imagination—there
has to be diversity of experience, pauses for effect, sudden and unexpected occur-
rences, and long, disturbing sections dripping with suspense. If the experiences are
too diverse or misplaced, you will lose your audience;as a level designer, you need
to have a feel for the emotional state of your player as he progresses through the
map or mission and have an instinct about what would be a good direction to turn
the play to keep his attention.

The most direct comparison might be to the beat of your favorite song.
Chances are, it isn’t a flat, repeated rhythm that doesn’t change from start to finish.
Drummersuse flourishes,different types of drum and percussion instruments, and
the occasional solo to drive the song along rhythmically. Otherwise, the song will

sound flat. The sameis true for games—a level designer needs to use the myriad
means at his disposal to create a roller coaster of experiences to keep players on
their toes. You can learn a great deal about rhythm in different media by watching
movies, plays, attending classical concerts, or reading novels. A great contemporary
example of the use of rhythm is the movie Finding Nemo. The length and position-
ing of scenes next to each other—the jump from action to drama, happy moments,
and moments of despair—is brilliant and would show a very diverse but climbing
graph of ups and downs of the user’s emotional being while watching. The same
pacing and focus on building the player’s excitement can be used for almost any
kind of game level.

Game Level Design

SIDEBAR

In a space shooter, the player is told to investigate the disappearance of a
cruise liner that has requested aid. The player is told it is a routine mission and
outfitted with minimal armaments.

As players approach thefirst waypoint, their radio goes dead. A little fur-
ther in and they begin to see pieces of wreckage fly by. When they reach the
waypoint itself, there is a constellation of wreckage but no cruiser. Suddenly, a
warning light flashes, indicating incoming fire, and the player is engaged by
several enemy fighters. After a shortbattle, the fighters suddenly turn tail and
retreat, and the player is able to easily finish them. The radio comes on again
andarelieved cruiser captain thanks the player for saving his crew and pas-
sengers. The player heads for where the cruiser is now shown on the radar and
approaches to begin escorting the cruiser home. All of a sudden, when the
player is just a few kilometers away, the cruiser erupts in a massive fireball of
burning gases and fuel. No sooner has the fireball formed, than a black shape
glides through it—the distinctive shape of an enemy battleship bristling with
guns. It’s the player’s turn to panic now, dodging huge pieces of speeding de-
bris and enemy fire to take on the battleship single-handedly.

In the sidebar example, there are a few high-intensity moments punctuated by
pauses in action or smaller respites. In some cases, the player is totally engaged—at-
tacking or being attacked—but at other points, he is cautious; at others, he perhaps
hoversjust above boredom level for a short while. If we take all of these moments,
we can probably show them more clearly as a graph as demonstrated in Figure 4.3.

INTENSITY

OF

EXPERIENCE

TIME

FIGURE 4.3 An example rhythm graph for an average game.

Basic Level Design Theory 69

Now, this is just for example. Don’t try to plot the rhythm of your level in so
much detail that you are afraid to changeit, or it takes a week of work to complete.
However, you should probably be aware of the overall rhythm of your map, and
writing down the key moments and pivotal experiences in sequence to spot areas
that need more work. You can do this in a “cell” diagram, as shown in Figure 4.4.

FIGURE 4.4 A cell diagram of the rhythm example showing key
moments or “beats.”

So, as you can see,it’s quite important to determine the rhythm of your level in
its infancy, where things are more organic and change is easily accomplished in-
stead of reworking vast portions of the level geometry a month before alpha. By
keeping the player on a roller coaster of experiences and interactions, you create
gameplay. Without sufficient rhythm, the player is basically out for a Sunday drive.
With haphazard or huge spikes in rhythm, the player may simply be exhausted by
the middle of the map.

Aesthetic Rhythm

As we described at the beginning of the book, the craft of level design is not purely
functional, and not always related directly to gameplay. Take care to make sure the
look and mood of your level flows along with the gameplay. Thisis largely what we
described as dissonance in the previous section—visual elements that seem out of
place, but it can be subtle enough that the player isn’t aware of why he feels the

70 Game Level Design

rhythm flattening out or that he’s just in a virtual environment and nota real liv-
ing world, just that he does. Some commonly recurring examples of this kind of
subtle break in the visual pace are drastic changes in textures, models, or lighting
styles orshifts in quality.

Drastic Changes in Textures, Models, or Lighting Style
When the walls of a corridor shift from metal plating to rubber padding, you're
going to notice, no matter how involved in the game you are. Subtle transitions be-
tween environmental elements can be a great way to invoke emotions in the player,
and we'll go over this more in later chapters covering techniques in building levels.
If handled inappropriately, however, it can also be a jarring experiencefor players—
even if they don’t consciously realize it! One consideration in dealing with aesthetics
such as lighting and texturing is that they often affect the viewer in very subtle ways.

For example, let’s say you are making a stealth-shooter. When players move
through a series of caverns with a rocky texture on the walls and deep blue lighting,
they will feel immersed in a damp, subterranean mood. However, if they transition
suddenly to a brightly lit, red-saturated room with concrete walls, their brains will
register a changein situation, even if the gameplay or the enemy type remains the
same. The player will stop and think, “Where the heck am I? I thought this was the
Cavern of the Wizard Del, not a high school furnace room!” They will begin to ask
themselves what this change means—what could be the significance ofred instead
of blue? Doesthe fact that the walls are man-made give a clue to some kind of up-
coming event oris it a clue that the player must change tactics? If the answer is “yes”
to these questions, you've successfully given the player a warning about impending
gameplay shifts, and that’s an example of good ergonomics. If the answeris “no,”
then you've made the player stop and think for no reason, which may bring a
screeching halt to the game-trance he’s been in up to now, or may cause him frus-
tration that he spent 20 minutes looking through his mission briefing for some clue
about the paradigm shift, putting a big dead space in the game’s rhythm graph.

Shifts in Quality

Sadly, one lingering truth in level design is that, as an iterative process, many times
the designer creates different areas of a level with more or less attention. Generally,
the ebb and flow of quality isn’t noticeable atall by the player. Sometimes, though,
if you had to rush through thelast half of your map, plopping down enemies hap-
hazardly and throwing textures on the walls like Jackson Pollock in a paintstore,
you may find your player actually stops playing when he notices the drastic lapse in
quality compared with the first half of the level, which was brilliant.

Previously, we've covered bad flow as being a disconnection problem, where
someone playing the level breaks out of their experience by boredom, frustration,

Basic Level Design Theory ra

unease, or any sudden negative shift of emotion by an incorrectly placed element.
You need to weight the design elements so that they feel right, but there’s no hard
and fast formula for that beyond experience and instinct. If the player is having a
great time in a survival horror game, walking down darkly lit corridors one minute,
suddenly to be fighting off zombie dogs another, it’s a balancing act of emotions
you as a designer are performing, choosing the right moments to introduce factors
from your designer’s deck of cards that will give the player exciting ups and downs,
side-to-sides, and zigzagging changes of pace.

However, when the player beginsto feel that he is not getting the real deal, or
not getting the designer’s attention, no amount of rhythm will save the map. It may
even be made worse by pouring all your effort into the beginning of the level (this
is why it’s a good idea to start designing your level from anywhere but the start).
Once you've tasted cheese, it’s hard to go back to plain crackers. It’s the same with
delivering a consistent effort in your design and implementation, and making sure
you don’t play all your rhythm cards at the start of game.

DIFFICULTY—-LET THE PLAYER WIN, NOT THE DESIGNER

The different design elements and techniques I've talked about until now—er-
gonomics, rhythm, and flow—are all pivotal to creating a great play experience. How-
ever, encompassing all these elements is the notion of difficulty as a level design tool.

Every game has a difficulty curve (see Figure 4.5). By extension, every level—as
a point on that curve—has a level of difficulty assigned to it. Actually, we call it a
curve, but ideally,it will be more like a wave when looked at closely. Why is this? A
steady, linear progression of similar events is not really fun, even if it’s steadily

DIFFICULTY

TIME

FIGURE 4.5 A simple difficulty curve.

72 Game Level Design

going up. A game level that simply gets harder the more you play is not delivering
on what makes games so different from other mediums—interactivity and being
able to respond to the individual actions ofthe player. Even a game like Tetris,
which on a surface level is about a steady increase of difficulty, has random inter-
vals where the blocks are easier to place than others.

Figure 4.6 shows a much better example of a game difficulty graph: It repre-
sents smaller areas of difficulty increase where a player is challenged more and
more, finally building to a goodly test of the players’ skill, at which point the graph
dips again—or simply plateaus—allowing players to gain control of the level and
feel like they have surpassed the skill of their opponents. Thisis also a good time to
introduce a new game or level element to the player—a new weapon, special power,
or a new type of enemy that players must now learn to use or overcome—which in
turn begins a new increase in difficulty, and so on. In practice, many levels end up
with a difficulty graph that looks a lot like Figure 4.7.

DIFFICULTY

TIME

FIGURE 4.6 A complex difficulty wave.

Each map has to have a difficulty graph of its own that will allow for the player’s
improving his skills and provide suitable challenges with suitable rewards. De-
pending on the genre of your game, the type of level you are creating, and the sort
of mechanics you have at your disposal, your own level graphs may appear quite
different—but you will hardly ever have an even curve from startto finish. Just as

with rhythm and flow, variations in difficulty will provide a more interesting expe-
rience for the player, if applied with care.

Basic Level Design Theory 73

DIFFICULTY

TIME

FIGURE 4.7 An example difficulty graph for a single level.

Waysof controlling difficulty vary from genre to genre, but some examples in-
clude the following:

Distribution of resources: The amount of ammunition in a map for certain
weapons or number of health items and powerup items that give the player an
extra advantage. If the player is constantly low on ammunition, he will try to
conserve it, and that will make combat more challenging. If there is an excess
of ammunition or health, then the player may simply be too well equipped to
be challenged by an opponent.
Distribution of opposing forces and their properties: Flying or invisible enemies
might be much harder to shoot than regular opponents, for instance, and a con-
centration of lesser opponents may still be tougher than a single major enemy.
Simply adding to the number of enemies the player has to face at one time will
increase difficulty, but can be countered by giving the player special abilities or
items to use that will allow him to take on more enemies at once, or defeat indi-
vidual enemies faster. Differences in the opponents’ properties can alter the level
of difficulty for the player without having to alter the number of opponents.
Distribution of clues: Leaving the player to work everything out himself will
result in a much harder level. Leaving clues in the form of intercepted com-
munications between enemies, emails, letters, messages from the avatar’s HQ,
and so forth can all ease the player’s progress through the level by letting him
know how to get past tough puzzles or encounters.

74 Game Level Design

Player character penalties: By slowing down the player avatar when it enters
water, or uneven terrain, for example, you can increase the difficulty of tra-
versing the level and carrying out actions in these penalizing areas.

There are many, many more techniques and solutions for fine-tuning the dif-
ficulty of a level, or specific section within it.

Dynamic Difficulty Adjustment

Some games include a system where the overall difficulty graph is organic—it in-
creases and decreases according to how the player is doing. When a level starts, it
has a pre-set difficulty, as normal. However, if the player begins to fall behind the
curve, and the engine detects that he hasto replay sections repeatedly, it will liter-
ally drop the difficulty level by a certain degree. This will continue until the player
drops further, in which case the level will make itself easier, or he actually rises
above the curve, in which case the level will increase the difficulty at that time.

Generally, this system will plug in to certain elements of the game. It might
simply adjust the hit points of the enemies, and so make the level more or less dif-
ficult by making the player’s opponents tougher or easier to destroy. It may increase
the number of enemies encountered in a specific battle, or it may increase or de-
crease the amount of health items in the level. The benefits ofthis (theoretically,
that is, because few games have implemented such a system very widely) are that the
player should be able to progress through the game without having to replay too
much of any particular system, but because the difficulty adjustments are invisible,
the player also doesn’t feel inferior to the game . Whatever the case, a level designer
needs to be informed ofa global system like this and should be comfortable work-
ing with in and setting up maps to support dynamic difficulty.

WOW FACTOR-THE WATER COOLER MOMENTS

Gameplay is the most important part of a level, but sometimes great experiences
come from other aspects ofthe level, such as architecture, special effects, or audio.

One of the things you'll often hear about when designing levels is the Wow fac-
tor. This intangible unit of measurement simply refersto the biggest point of impact
in your level. It could be some kind of impressive architecture or landscaping. It’s
also known as a “water cooler moment” because people will be so impressed they’ll
all be talking aboutit around the cooler after they've played it. It could be a complex
and impressive scripted event involving dozens of NPCs launching a coordinated at-
tack on the player. It could even be a challenging mechanic or puzzle so ingenious
that the player can’t help buttell his friends about the next day. It simply has to leave

Basic Level Design Theory 75

an impression on the player. Ideally, a level should have a few of these moments—
they define a level to the player, and often to the community of gamers who play the
title. It’s when you hear, “What was the name ofthat level? It was the one where the
floor collapsed and you free-fall between the skyscrapers trying to land on the alien
bomber!,” and the like that you realize that many games, and levels within those
games, are known best for several superior moments of play. Wild situations and
level locations can convey a lot of “Wow.” Figure 4.8 shows a concept painting for a
level set on a sinking oil rig. The tilting decks and slow demise of the level into the
ocean over time is a great way to get players talking about this particular map.

FIGURE 4.8 A sinking oil rig level—a good example of
the “Wow factor.”

The Wow factor is the sort of thing game journalists will zero in on and rave
about, and thus it’s often more important to producers and marketing to have
these clearly defined “moments” in a level.

76 Game Level Design

SIDEBAR

An example of Wow in a game:
The player has been slogging through the cramped tunnels and water-

logged chambers of a dungeon level. Until now, the only opponents have
been varieties of zombies and the occasional giant rat. Suddenly, he walks
through a doorway into a huge room full of bones mired in a pool of black
water. The bones rise up, dripping, and begin to swirl around, in a cloud of
particle effects so dense it threatens to set fire to the player’s monitor. The
bones swirl up into the form of a giant skull with spider’s legs, and suddenly,
torches flare around the walls showing row after row of spectator seating, pale
faces leering at the player as the bone-monster approaches. This isn’t just an-
other dungeon chamber—it’s an arena, andit looks like the player is the star
attraction for this evening.

You might think that this aspect of a level is a natural occurrence. However, the
Wow factor is often dictated by other channels—marketing being one of the biggest
culprits. It’s often good to nail down what part ofthe level is going to provide the
biggest impact and have the relevant parties agree. The worst-case scenariois being
told your level needs more “pop” three days before the game is ready to ship. Hav-
ing this element designed in detail and approved from the start will help to avoid
potentially troublesome rework down the road.

These concepts are all things to be considered as you first start developing your
ideas for the level. Some of these may be provided for you in the design doc or level
documentation. Perhaps, if your level is to feature a “boss” character or special
challenge at the end you will need to work closely with the designer to accommo-
date a special difficulty curve. Likewise, in some instances, the pacing of your level
will be dictated by the part of the game it occursin. Later levels may feature up-
tempo pacing throughout the map.

HOOKS—SETTING YOUR LEVEL APART

The “Wow” momentsin a level may inspire or impress a player for a short period,
but an entire level can stand out from the other maps in a game.

One of the most important factors in game design, especially from the point of
having the game fly off the shelves, is to have a hook. A hookis some unique or
must-have feature that will attract players simply because they haven't experienced

Basic Level Design Theory 77

anything quite like it in a game before. Much like fish are unwilling to simply leap
into a boat without actually being hooked and reeled in, players also need incen-
tives to purchase a game (or ask that a game be purchased for them) and when it
comes down to it, games within a certain genre can only differentiate themselves by
the different features and experiences they offer against their competitors.

Likewise, in level design, a level’s hooks are the major features that makeit dif-
ferent—and therefore attractive—to the players of a game. Levels with good hooks
are almost always the experiences that players will remember fondly or describe as
the moments that defined the game for them.

A good hook can be all-encompassing “twist” that affects everything in the
level. It might be a special power the player character only hasfor that one map, or
it might be a completely different style of gameplay or environmental style.

A great example ofa level hook is one ofthe later stages in Dark Forces 2: Jedi
Knight, a FPS by LucasArts. In this level, the player is stuck within a spacecraft that
has been crippled and is slowly plummeting down into a canyon. The level layout
is already known to the player—he went through it once before in a previous mis-
sion. This time, however, the entire level is turned on its side, and gravity is no
longer a constant, with walls becoming floors, corridors becoming deadlypits, and
enemies moving with just as much difficulty as the player.

By taking a normallevel and givingit a big twist (literally), the designer created
an entirely new experience, one that took the player by surprise and introduced a
slew of new challenges to overcome in that short space of game time.

In Chapter 12, we will discuss the CIA level from Tom Clancy’s Splinter Cell, but
as another example of a game hook, this level was one of only two levels in the game
where the player was not allowed to kill a single person. For many players, this was
a much harder mission demand, and it forced them to use stealth in a game that to
that point had supported the ability to simply shoot troublesome guards and op-
ponents. The simple fact that this level had a single, but viable hook—it was a
stealth-only map—made it stand out to players as a novel experience within an al-
ready novel game.

Hooks aren’t always necessary, or feasible, in game maps. However, if you think
there is something you can do to create a memorable twist or to make your level
stand out from the others, think about using it, or at the very least bringing it to the
other designers to see if it would add something special to the game.

SUMMARY

Fun is an extremely subjective word. There’s no strict formula for what makes
something fun. However, a more obtainable goal is making an enjoyable level,
which coupled with the overall design of the game, should lead to a lot of fun for the

78 Game Level Design

player. A level designer needs to be a master of juggling many elements all at once
to make a fun experience for the player.

These elements, the “high concept” factors of designing an entertaining level,
were covered in the chapter:

Ergonomics: Making sure the player is not frustrated in play
Flow: Keeping the player moving through the playfield
Rhythm: Providing a spread of intensity and experience to motivate the player
Difficulty: Keeping the player challenged
Impression: Or “Wow Factor.” Introducing the element of aweat key moments
Hooks: Making your level stand outto the player as different from the others

INTERVIEW WITH DREAM SMITH OF GRIPTONITE GAMES

Dream, can you explain a little about what you do and how you came to be doing
it? What games have you worked on?

Well, quickly, I spent a lot of time as a kid playing games, not just video
games, but chess, anything requiring the application of logic to solve a prob-
lem. Add to that a love of drama andstory. These together led to film school,
testing, temp work for Nintendo, and then a lucky break at Griptonite de-
signing on Lord of the Rings.

Games I've worked on: Return of the King, James Bond: Everything or
Nothing, Lemony Snicket, and a little help here-and-there on some others—all
Game Boy Avance (GBA).

Can you explain a little about designing levels for handhelds—what are the ob-
vious limitations for levels (screen size, memory constraints, fewer controls,etc.)
and how do you design around them?

You named my toughest hurdles, but in addition, there’s the age (and per-ceived age) ofthe audience,the cart size, 2D games, and the accelerated sched-
ules to which most GBA titles are restricted. PC and next-gen consoles spend
2-5 years ona title, but every six months weare expected to complete a game.The grueling pace leaves little room for revision, which I need as a designer;
though there’s upside to bustle. Aside from learning efficiency tricks,I get to
start on a fresh project twice a year.

—>

Basic Level Design Theory 79

The biggest constraint for meis screen size and perspective. The games I'm
used to playing at home are almost all in 3D. I am accustomed to thinking of
gameplay in those terms, thinking of an enemy being “in proximity” when my
Player Character is standing at one end of a hallway and he at the other. For a
stealth game, seeing your target before he sees youiscritical. In a treatment of
that scenario on the GBA, the screen is so limiting that you could be right on
top of the enemy as soon as he appeared on screen. So, the breadth of a single
activity has to be distilled down. The grand sense of overall action also has to
be considered. Using an action gameas an example, in a classic FPS, I might see
3—4 characters shooting at me, weigh my options of which environmental ob-
ject in my vicinity to duck behind, and run for cover. On the GBA screen, with
four guysvisible plus your avatar, it’s going to be pretty crowded. Showing fur-
niture and obstacles on top ofthat, and a HUD on top of that, and the game-
play will be cramped, and your choice of cover forced (the couch that’s on
screen, duh), since the rest of the objects in the room wouldnt be visible. I

can’t expect the player to know what objects lay off screen, evenif they're two
pixels away, evenif they’ve seen them prior (I can’t expect memorization).

A lot of these issues are handled before the level design stage: How fast
will the hero move? At what perspective are your backgrounds? The one that’s
most defining for me is how many pixels high the hero is rendered. Player-
character size will inform all the other perspective questions. And it’s not a

simple answer; give-or-take four pixelsis a laughable height differentiation for
a console character, but that’s a ton of detail lost on the GBA. Theflip side is

that the bigger your avatar, the less screen real estate is available to show the
player what is around him.

In designing levels themselves, I always start out constructing these long
passageways connected to cavernous rooms, and there’s justall this space (the
artists I’ve worked with will attest to this, my early maps are huge). It’s what
mentioned before about playing 3D PC games at home, and thinking about
the experience of walking into a large room. In those games, I walk into the

room, and I can look all the wayoff to the other side of the room and say, wow
this room is big, and maybe see a structure all the way in the distance that has
a beacon shining, and that will draw me toward it. What happens when I hop
into my newly designed levels and start playing them is I'll walk into the large
room and all I'll see is floor! And I'll walk and walk, and still, for way too long,
it’s all floor. That sense of the large room is lost, and instead there’s a sense of
discontinuation, of chaos, because there’s no visible form to the area I'm in.
Eventually, I'll get lucky and hit a wall, but it’s not fun. So I'll go back, and
apologize to the artists, and cut the map, and this is not an exaggeration, by

—

Game Level Design

60-80%, and it will still be large enough and fun. And in the cuts, all I'm doingis looking at that long hallway, and saying, look, the experience of “long” hereis about 60-80% shorter than I thought, because after walking down a hallwithout seeing what's in front ofyou,it will seem long,
Then there’s the issue of leading the player. In the previous example,there’s a big structure, or a beacon, sighted farin the distance. Using some con-tinuous landscape feature can take the place ofthis far-away landmark. A heav-

ily trodden ground texture that follows the clearest path from start to finish canclue the player in on where he’s been and which way he’s going. I'll maybe tryto encourage exploration by trailing a few footprints out downaside corridor,and players who get lost can always wander back around and see the large trailand gettheir bearings. Flashing lights in sequence, bodiesleft in the wake ofafleeing monster, a river flowing through the level, there are a lot of ways in alimited sight-range scale to provide both a carrot and a bread crumb trail.
Whatis the role of the level designer when creating games for portable systems?Do they handle more or less of the artistic and programming needs for their en-vironments than might be common in console or PC games? Does the smallerteam mean fewer designers, or does it require fewer support roles to help flesh outlevels beyond their gameplay requirements?
Portable game teams here are between 4 people at the smallest to 13 for a hugeproject (The Sims), with an average of 7-9. A level designer acts as game de-
signer, as scripter, as inputter of data into code,as tester, and as adjuster ofhotspots and collision boxes as needed.

The core role of thelevel designeris still to design levels. On all games, thisrequires papering out the levels, the basic architecture, storyboarding what
eventstranspire. In some projects, designers will construct the map itself out ofa tileset provided by a background artist (imagine a pile of LEGO®s, some withground textures, some with walls, some with trees, some with chairs; and withthose piecing together environments). Once laid out, the level designer then
scripts the level, placing enemies and level logic using a simple scripting lan-
guage, not coding really, but it’s helpful to have a background. There are de-signers here with no coding experience or knowledge, and there are those with
a lot. The more you understand what's going on behind the GUI, the betteryou'll harnessit, and at best, you'll innovate. And we play through the levels.The coders and theartists areall drawing or coding and don’t have timeto justplay through the game. This is no different from larger-scale projects, I imagine.

dy

BE=IITTRERRRETIRERIORATR.

Basic Level Design Theory 81

How do you go about planning for your levels and what sort of documentation do

you generate? Can you explain the most effective ways you've found to prepare for
a level and share the vision with other team members?

Theres always one basic mantra developedatthe beginning ofthe project that
encapsulates the heart of the game. When starting a level, it’s good to keep
that in mind, though in the depths of production, it’s also easyto forget.

The levels designed immediately prior affect a new design more than any-
thing else. I just never feel like designing two open spaces in a row! People
won't like playing it either, so that’s just as good for the overall flow as for my
enjoyment.

I'll just sit at my desk, leaning on myelbow, perched over a pad with the

bottom of my palm pressed to forehead. I'll sketch ugly shapes (I cannot
draw), and they won’t make sense, but I'll start to conceive of the idea for the

level, and as the scribbles and revisions overwrite themselves so much as to
become unintelligible, I'll tear that page off, layit beside the pad, and redraw

it, only cleaner. In the redrawing it will change, and will itself demand scrib-

bles and revisions, and then—another page torn and another cleaner version.

Depending on the game engine, the process for entry is different, but I will es-

sentially then build the architecture and collision and play it in-game. Once

I’m satisfied with how it feels to move around, I will take a .jpg of the level lay-

out in a simple paint program and type in my notes on what happens where.

At first I did this solely for the benefit of the artist—door here, big statue
there—but it became increasingly useful to me when, later, I've forgotten why
it was horribly essential that this platform be shaped like a “W,” and I can refer

back to my paper layouts complete with labels and instructions. After that

point, the difficult decision makingis done, and scripting can be just follow-

ing a blueprint. Decisions, of course, continue to be made during implemen-
tation, but the overall direction is there.

Can you give an example of a level that you worked on that didn’t go as planned,
and how you dealt with the problems?

Aside from the elephantine proportions of my initial levels, I find myself
overextending particular ideas. I will have a very large idea, orseries of events
that T want to play out, and I try to lay out a map encapsulating all of them.

Avoiding the early issues of rooms-too-large, sometimes this will become

cluttered. Sometimes it will draw on too long. Letting go of the unified con-

struct, and breaking the experience into distinct rooms,stretched over a series

of maps, is helpful to the game. It’s tough initially to crack an idea I'm proud
of into smaller bits, but ultimately better off.

—>

What inspires you when you begin designing a new environment?
GBAis almost all about licensed titles. I’ve been lucky to work on good li-
censes, so it is from there I draw my inspiration. Specifically, it is from the
central theme that I've distilled during pre-production. Like a film director
working on a gangster movie, making a scene he shouldn’t lose focus on what
it is that a gangster portrays, what is gangsterism. On a game like Lemony
Snicket, for instance, I felt that the books (and film) were about children, due
to a series of unfortunate events, forced to act in the world as adults, and all
the adults in the world were suddenly acting as children. To me there was this
whole idea of maturity—the books were written for children but under the as-
sumption that it was going to presented as something more mature, so from
the subject, to the style, to the packaging, the whole thing was very adult, and
I wanted to portray that in the game. So the HUD, the controls, to the levels,
everything was made to be totally accessible to the core audience of children,
but to feel adult. Enemies were easyto kill, but looked and acted mean. Levels
were simple to navigate but appeared grimy. Puzzles were laid out to appear
as complex, as convoluted, as possible, but containing a simple solution. A kid
who solved a puzzle like that, and got this huge mess of levers and machinery
moving by his own guiles would feel adult and accomplished, even though the
level gameplay would have been the same had there just been a door and a
switch. Every game I've worked on starts with something like that.
What advice would you give someone who was thinking of taking up level design
as a career, or who was considering moving to design from an art or program-
ming background?

Well, play games. But more, concentrate on what you are playing. Millions of
people play and enjoy games, thousands can discuss their favorite moments,but try to infer what it is thatis going on there, what isit that makes one gamebetter than another. Start from a very macrocosmic view of design decisions,
the genre, the level flow, the special character abilities. Discern the differences
and character of the games you're playing, then look closer. How do the mi-
crocosmic choices affect the overall direction of the game: how the player
walks, the layout ofthe buttons, the look of the menus, the enemy reactions.
A gameis so much more than just the programming, or the art,or the designs
within it. It’s all these disciplines together in a whole greater than its con-
stituents. For that reason, read, paint, see movies, solve age-old mathematical
formulas, fall in love, write, construct origami. A well-rounded gameis a
strong game. As a designer, I think that’s a great quality.

: Refining the Player
Experience

83

84 Game Level Design

In This Chapter
Creating a Level Abstract
What Happens Now?
Connectivity and Defining the Boundaries
Gameplay Narrative
Ingredients
Physics as Ingredients
Encounters
Challenging the Player’s Game Knowledge
Creating Tension
Risks and Rewards
Rewards in General
Scripted Gameplay
Using Artificial Intelligence
Level Gestalt
Summary
Interview with Harvey Smith

BEE

EEE

EEEE

EEE

EEE

good ones tick. At this stage, you need to actually address these issues so youcan develop your design. This book isn’t a “how-to” that simply lays out abunch of options for you to pick from and build a Frankenstein map. A truly fun
level will come purely from you—the level designer—when all your instinct, cre-ativity, and imagination are focused on making the map at hand. There are, how-
ever, many factors to be aware of, manypitfalls to avoid, and many approaches youcan take. Before we describe the details of how to produce professional designs, thischapter will talk about design itself and the sorts of things that need to be consid-
ered by the level designer between creating the abstract and actually designing the
level on paper.

B y now, we have covered a great deal of territory about levels and what makes

CREATING A LEVEL ABSTRACT

The abstract isthe first step in the design process. Literally, it is just a vague sketch
of the level, and the most important things that have to be contained in it. Little de-
tail is generally provided atthis stage of the process, not because of laziness, butbecause of respect for the process. The craft of designing, and building, levels pro-fessionallyis highly iterative. Things change constantly, and as the designer createsthe level, on paper and in the editor, these changes result in a better and betterlevel.

Refining the Player Experience 85

It’s a process of evolution that allows mistakes to be seen early and corrected, or op-
portunities for new and greater player experiences to be discovered and added be-
fore the final productis delivered.

Even the most organic design process needs to start somewhere, however, and
needs a few initial ideas to get the ball rolling and set the playing field for the next
few months of work. This has many names, but in this book it will be referred to as

the level abstract. In some cases, you, the level designer, will create the abstract. In

other cases, the game designer mightcreate it and handit offto you.
A level abstract can be a text document, a folder of handwritten notes or even

a collection of sketches and diagrams, depending on how many people will need to
refer to it. On some teams, the levels designers are expected to type and maintain
the documentation for their levels throughout the game’s production. Other teams
will roll the level data into the design document when the basics have been agreed

upon. Others require no formal documentation, but you should assemble some
kind of materials at this stage. You'll find it invaluable to have the basics of your
level available for early team reviews, showing other people on your team what they
might need to be building for or preparing for, or simply to refer to months later
when you've forgotten why you made the last half so incredibly hard.

The case study in Chapter 12 demonstrates a level (or mission) abstract, but no
particular format works better or worse—the keyis to develop a document that
contains the information needed by you and your team. The elements you will

want to include, in general, are the following:

Player Character: Who the player will be, and what will he be at the start of
the map?
Objectives: What does the player need to do, and what objectives does he have

a choice in doing?
Difficulty: Where does this level fall in the overall game difficulty graph?

Location: Where in the universe doesthis level take place?

Environment: What's the weather, time of day, and geographic/architectural
style?

Enemies: What characters will the player be pitted against, if any?

Gameplay elements: Broadly, what sort of gameplay will the level feature? Puz-
zle, stealth, action, driving, ...?
Position: Where in the game does this level take place—whatlevel comes be-
fore and what comesafter this one?

Having a mission abstract prepares you for the design process and will be a

document you can always refer to when you wantto ground yourself later if you
forget what the core experience is meant to be. At the very least, the abstract will

86 Game Level Design

allow you to begin to picture the environment and begin thinking of the kind of
map you want to make.

WHAT HAPPENS NOW?

In the last chapter, we looked at the high-level theory of what makes a fun level. How-
ever, going from theory to an actual design is a long, and sometimes arduous process.The abstract provides a good platform to start from initially, but now more funda-
mental questions emerge about the level you are responsible for making and just whatit should be. Before taking outa graph pad, consider the overall player experience, andall the elements that you will use to makeit happen—the countless elements that will
go into the playspaceto challenge the players and reward them for success.

CONNECTIVITY AND DEFINING THE BOUNDARIES

The Big Picture

Look first at the “big picture” of the level based on the abstract you already have,and then work downto the details. Thinking of the level as a whole, how muchfree-dom does the player need, how much play, or ways to interact with the level, will
the player be allowed? Examples of everything from extremely focused linear levels,
to wide-open environments full of possibility can be found in modern games. In a
racing game like NASCAR, the tracks are built to constrain the player to the road,and rightly so. What purpose would a professional NASCAR driver have to drive
out of the stadium and onto city streets? The design ofthat particular title has noreason to allow the player more freedom,or agency, than is needed for a top-class
racing simulation.

On the other hand, a driving game suchas Midnight Club II isall about lettingthe player go wherever he wants. In this game, the player roams real-world cities
looking for other driversto challenge. Where he goes and who he challenges are upto him, though linear sections do exist to allow the story elements to progress prop-erly. The game relies on the player rewarding himself by exploring the maps at willand discovering and creating ways to use what he finds for even more interactions.
Game designers often refer to this as emergent gameplay. Emergence is giving the
player tools and toysin the level and letting him work out what to do with them,rather than very rigid encounters and puzzles that can only be defeated by a single
solution—collecting the correct keycard, moving past a guard without alerting him,

or triggering a scripted sequence, for instance.

Refining the Player Experience 87

Flow Versus Freedom

There are pros and consto letting the player “off the leash” and play in his own way.

If the game you are makingis heavily story-driven, if there are many goals or tasks

that need to be accomplished in a certain order, it is much easier to create a linear

path through the environment that makes sure the player hits all the triggers and

plot points needed to convey the storyline. On the other hand, people play games
to have choices—if they wanted a linear story, they could as easily see a movie. Al-

lowing freedom of movement and pacing of story is something that we as game de-

signers can give our audience. The trick is in balancing freedom by ensuring that
the players cannot getso lost in freedom that they forget what they were meant to

be doing, or simply get bored with no real purpose or goalto keep focus on. Look

carefully at the design of your game and the requirements of your levels. Ask your-
self the pertinent questions that will give you some ideas of the levels big picture:

m How important is the storyline in the game, or the need to have the player in

specific places atspecific times to make the narrative progress? How linear does

it need to be to keep the story moving, and the player interested?
® What amount of freedom will support and enhance the player? Is the game one

about choices (tactical shooter, RTS, role-playing game [RPG], or adventure

game) oris it about constantly moving forward, making fast decisions, as in a

racing or fighting game?
® What are the project’s restrictions on time and money? A wide-open level

needs to be full of things to do—and these things take time and energy to cre-

ate, not to mention art assets and code. Some games feature more linear levels

as an efficiency measure, rather than as a design choice.

Different Flow Models

In between the ends of the spectrum—Ilinear levels and open free-form sand-

boxes—there are many different “flow types” that a level designer can examine for
his own maps.

Linear

Linear levels are the bread-and-butter of many action games. The player starts on

one end and finishes at the other (Figure 5.1). Along the way heis forced to inter-

act with the level—to shoot some aliens, unlock a door, use a gadget, solve a puz-
zle, or jump across some floating platforms. These obstacles break the player’s

progression to create an enjoyable and unpredictable rhythm in the level; however,

it requires diversity in the sorts of things that the player will be doing; otherwise,

boredom will set in. If the level is really just the player moving through beautifully

Game Level Design

built spaces, occasionally either opening a door or shooting an alien,it will be prettydifficult to make a truly interesting experience. Linear levels are better kept short
and interesting. Great-looking aesthetics will help to keep the player’s attention, butthe level designer must work hard to create major and minor encounters that testthe skills and expectations of the player. You can find examples of linear levels in
most games, especially shooters like Half Life and SOCOM: US Navy Seals.

En ET
FIGURE 5.1 A linear level progression.

Bottlenecking
A bottlenecking map progresses like a linear map; however, at various points in the
level, the path will split, allowing the player to choose which wayto go. Of course, allthe splits keep the player moving toward the end of the level, but the experience
along each path will be different. At some point later, all the paths will converge into
a single linear route again—usually at a point where the player is required to do
something special in the level (Figure 5.2). The beauty of this kind of level is that
players will get the feeling that they have some freedom of choice—that they can takethe elevator or the stairs, for example—when really the choice has no long-lasting
impact on the flow of the level. Many games use these paths to give players a chance
to engage in a particular activity that they enjoy more—the elevator shaft might in-dicate that jumping and climbing is needed to reach the top floor. The stairs may bethe path that puts more enemy alien warriors between the player and thetop level,thus would be a better choice for a player who likes combat and shooting.

STelad [cp len
IY

FIGURE 5.2 A bottlenecking level.

With bottlenecking, you can increase the player’s feeling of making tactical de-
cisions, butit can also be confusing if you don’t make the branches clear, orif the
player ends up at a bottleneck and isn’t sure which way to go. For example, if the

Refining the Player Experience 89

level splits into paths A, B, and C, when those paths converge it has to be obvious
that a doorway leads to the next section of the level, otherwise the players who ar-
rived at the convergence via path A may (for instance) mistake the end of path B for
the doorway they need to continue through. Going backward along path B and ar-
riving where they started an hour before won’t endear you, the designer, to them.
A bottlenecked map allows the level designer to create a map with more diversity
and choice, but also means that some players won’t see certain areas or splits unless

they go back and playit again. Unfortunately, many people think this is a waste of
time; however, keep in mind that choice is what sets games apart from other forms
of entertainment—if the players only see half of the level but enjoy every minute of
it, is that a bad thing? Many examples of bottlenecking can be found in Deus Ex, a

game that tried very hard to create meaningful choices for the player all the time.

Branching

Branching levels split several times during the player’s progression, but each split
leadsto a different ending (Figure 5.3). The benefit of a branching level is that, like
bottlenecking, the players are required to make weighty choices during play, and
the experiences between players can be different based on how many splits there are
along the way and how many different endings or exit points the level supports. The
downsideis that a level that branches a few times may end up taking much longer
to build and create interesting encounters for than will a simple linear level. Also,

the more branches there are, the more ofthe level will remain unseen by the player

Branch

FIGURE 5.3 A branching level model.

Game Level Design

in the initial pass through. Although many gamers will retry a level, taking paths
they didn’t choose the first time around,if they know there are unexplored options,it won’t help makea better initial experience. Many teams avoid this route because
it takes so many more resources to create a complex branching map than other
models take. An example of branching can be found in the classic arcade game Out
Run, which allowed the player to choose between two paths at the end of each
track, making use of a branching system of levels.

Open

Open levels are very different than the models we've reviewed so far. Instead of
pushing the player toward a physical ending, separated by encounters and obsta-
cles, the end of the level is based on the player performing a certain number of
tasks, earning a numberof points, or simply finding a way out using things that arein the level environment (Figure 5.4). Open levels are often referred to as sandbox
levels, meaning that they are walled-in areas where the user can play with the many
toys and activities that the level designer has placed in the environment. Grand
Theft Auto 3 (GTA3) uses the sandbox model extensively. The players start in a sec-tion of the main city with access to other areas blocked off until they have com-
pleted certain important tasks. Within that section, however, areall the tools that
the players need to complete these objectives when and how they wish—an endless
supply of various vehicles, weapons, and locations. The player may decide to do
everything in the map besides completing the missions that will allow progres-sion—or decide to only do those missions, allowing quicker access to other areas.In this way, open levels allow the players to control the rhythm and flow of their
progression through the game.

The model of an open level often goes along with the concept of “systemiclevel design,” where players deal with systemsin the game that allow for more than
one means to success. At end ofthis chapter, Harvey Smith discusses systemiclevel
design in detail and what it means to the level designer. However, a quick exampleof systemic design in GTA3 is any mission where the player is required to assassi-
nate a character. Each person in the game has a health system, and anything that
hits the character interacts with this system—a bullet causes damage, as does abaseball bat, but so does being hit by a hijacked tour bus. There are many ways to
use the character damage system to complete a simple task, based on the tools and
situations the players have available to them. Open levels support this kind of de-
sign by allowing free access to mostof these tools at once. One ofthe first games to
use this sort of game environment was the legendary space trading game, Elite.

Hubs and Spokes

Frequently, large, open maps are actually hubs rather than actual levels the player
completes. A hub is a level, or part of a level, from where other levels branch off,

Refining the Player Experience 91

Objective

Objective

ObjectiveEZ Objective

Objective

FIGURE 5.4 An example of an open level.

and return to. Rather than having a very specific end goal, or tasks to complete, hub
levels are often the central area in the game and the player returns to it repeatedly
again during play (Figure 5.5). An analogy for this is a train station. The hub level

is the terminal, and the levels branching off are trains that take players to different
locations and encountersafter which they return to the terminal. Because the de-
signers know the player will return to the hub level frequently, thisis often where
the item shops, training areas, help characters, and so on are. These aids are placed
here for the players to use when they return from levels having collected money, or
items, or information about the world.

The levels that extend out from a hub are often called spokes, as on a wheel.
This model of level design is quite efficient and folds in many ofthe benefits of

models we have looked at until now, however, it is important to note that this is not
a system for designing a single level but, rather, for grouping levels together effi-
ciently. The hub could be an open; or branching level. The spokes could be linear,
bottlenecked, or branching levels. Many games, such as Jack and Daxter and Mafia,
use the hub-and-spoke system.

Hub levels often only unlock spokes a few at a time. This allows the player to
see many of the areas that will be open later in the game, but not access them,

92 Game Level Design

To Hub B

FIGURE 5.5 illustrating the hub-and-spoke idea.

whichis a great way to foreshadow future events in the game story.If the players getto a roadblock and see a lighthouse in the distance, they will think “I bet I can getthere later in the game.” It’s even more enjoyable for them when they’re right.

Dynamic Level Generation
It’s worth mentioning a system of designing levels that is becoming popular as
technology begins to support it—and thatis the art of not designing levels. Well,
not all of the levels. This technique allows the game engine to create a level “as
needed” from pre-created snap-together sections (Figure 5.6).

Dynamic level generation works for games that can support more generic or
repetitive-looking environments by having a greater number of encounters and in-
teractions. It works very well for RPGs where the player is used to many random el-
ements—random enemy types, random items left behind by slain creatures,random spells being cast by enemy mages, and so forth. However, dynamic gener-ation doesn’t mean completely random. In fact, it can often be several times moredifficult to create a level in this way than simply building a traditional “fixed” level.
This is because to create dynamic levels—dungeons, forests, canyons, villages, and
so on—the game engine needs to have access to lots of different pieces that fit to-
gether properly and have rules that tell it what piece connects to what other piecesand how. These individual sections need to be planned out and built by designersand artists, and there need to be a lot of them, or the levels will start feeling very

Refining the Player Experience 93

aFIGURE 5.6 How dynamic level generation works.

similar very quickly (if all your pieces are crossroads and straight paths, your levels
will all be grid-like and boring). Furthermore, the level designer needs to provide
specific goals, encounters, items, and creature types that must be in the level re-
gardless ofthe physical layout. In this way, the flow of the map, and to some extent
the ergonomics (creating dead-ends is practically unavoidable using dynamically
generated levels) of the level may change drastically, but the key elements will al-

ways be there. This means the level designer can rely on every player going through
a specific level finding the Mystical Sword of Shish-Kabob, even if the location of
the sword, and the path the player took to getit,is different every time.

It is not unrealistic to think that as on-the-fly calculation and rendering be-
comes more and more efficient, many games will feature dynamically built levels—
racing games could feature unique tracks for each race (but a track that a player
liked especially could be saved for return visits), and strategy titles could feature
completely original, but still expertly balanced, playing fields to do battle on.

GAMEPLAY NARRATIVE

As players progress through a map, track, or game screen, they are telling a little

story. This is the kind of thing you're likely to hear from friends and co-workers

94 Game Level Design

when theyare relating an amazing experience they had playing a gamethe night be-
fore: “So there I was, driving after the bad guys when a bus crossed thestreet in
front of me—so I skidded around the bus, knocked downa streetlight and it landed
in front of the truck I was chasing . . . whichhitit, flew into the air and crashed on
the roof of the burger place across the street!”

These are the stories we want the players to tell, but are generally unable to force
them to experience.In essence, good game design, and by extension level design, re-
lies on giving the player the right tools, the right components and challenges, atthe
right time. Sure, anyone can wow a player with a pre-rendered cut-scene of the
story, but whenit happens to the player in real time, unfolding before his eyes and
underhis control, it’s a completely different level of experience. When considering
your design approach, there are key things to identify, which we’ll look at next.

INGREDIENTS

Ingredients is a term picked up from working with French game developers for several
years. It is an excellent way to describe the parts of a level that make up the gameplay,
rather than the parts that make up the obviousarchitecture and framework.

The ingredients of your level are all the elements afforded by the designer’s vi-
sion. It might be creatures, it might be weapons available in the map, or other
items. It might even be the kind of encounters the players are allowed to have.
Some levels rely heavily on combat encounters. Other games require that a level
designer create situations that allow the player to sneak by adversaries. Sound ef-
fects are ingredients, as are moving platforms and elements that the level designer
can use in combination to create interesting variations on the same theme. Simply
jumping from one platform to another can be fun initially but quickly gets boring
if that’s all there is to do. By creating twists on a theme—sometimes having a plat-
form give way when the player lands onit, or having one or both platforms mov-
ing, or invisible platforms that only appear every few seconds, and so on. You can’t
be expected to come up with a whole level full of unique ideas, that’s like writing a
book with a completely original plot, an impossible task. On the other hand, you
will be expected to think quickly as you design to come up with different and in-
teresting ways of turning the raw ingredients of the game into exciting and enter-
taining encounters. In this way, level design is like creating a great soup—it’s not
simply the acting of adding ingredients into a container and heating. The different
ingredients need to enhance each other, combine to create good flavor and texture,
and come out much greater as one than they were alone.

Refining the Player Experience 95

The elements of your level might notall be handed to you by the designer.
Level designers frequently need to supplement the list of game ingredients, or make

up new ones to make a game experience work properly. If you are responsible for

creating the ingredients in your level—designing the kind of creatures the player
will combat or the powerups available, you will need to provide the information
needed to the art and programming teams. Common pieces of information for a

map element you are creating are the following:

Purpose: Is this entity a character, a weapon, a piece of a puzzle?

Goal: What is the reason for the ingredient to exist? Is it to destroy players, or
heal them? Is it there simply to be pressed so a door can open?

Visual Description: What doesit look like in the game?

Special Animations: Is this the only enemy in the game that can headbutt the

player character? If so, the animation team will need to create special anima-
tions forit.
Availability/Occurrence: Where will this ingredient show up? Is it just for one
specific level, certain geographic locations, or anywhere in the game? It may be
that something you design is useful to another level designer, so make sure you
clarify restrictions on where it should and should not be used.

Placement Considerations: Where in a level should this go? Should it be

grouped in pairs, or should it only be found alone? Isit rare or common? Isit
contained in crates the player has to smash or can it be found in the street?

Attributes: Is this ingredient a character with health, armor, and ammunition
that needs to be set? If so, how much of each? Is it randomly determined? You
will need to outline the common game attributes that are used by this entity.

Special Properties: Is there something thatit does that nothing else in the game
does? If so, give a brief description and lay out how the attributes should work

so that the programmers cansetit up properly. For example, if you are design-
ing a Mud Monster who needs to be destroyed with soap, you might need to
give him a cleanliness metric instead of health. Normally, soap won’t harm an

enemy character in the game, but the Mud Monster is programmed specifically
to detect when a soapy projectile hits it and increase his cleanliness attribute
until it reaches 100%, at which point the monster is defeated. You might lay
this information out as shown here:

96 Game Level Design

Behavior Variables Description

Soap Allergy Cleanliness (0) When first encountered, the Mud
Monster hasa cleanliness metric of
zero. When hit by a soap object, its
cleanliness will increase by a random
number between 7 and 11 points,
until the metric reaches 100, at which
point the monsteris destroyed.

Items Used/Carried: If what you are designingis a hostile NPC, doesit carry a
weapon? Doesit carry many, oris the weapon it carries randomly selected from
a set specified by the level designer? Does the ingredient have an inventory, or
items that it drops when defeated or destroyed? What are they?
Notes: Explain anything that doesn’t fit into these categories, even if it is just a
loose suggestion of how an ingredient should look, or act. If it’s helpful in cre-
ating the entity, it should be stated.

x Itis good to keep ingredients that you create adequately documented, especially whenA i's to pass your designs on to the programming team for implementation. Included onthis book’s CD-ROM in the Sample Documents folder are examples ofdocuments used
to document level ingredients, as well as blank templates for you to use or from which
to base your own.

NOTE

fonts
ON THE CD

PHYSICS AS INGREDIENTS

The use of real-time physics in games is almost a standard feature, with technology
available that is able to efficiently calculate very complex predictions about how
things in a game should behave when in motion. Some games use physics in a
purely decorative way—the bodies of enemies using “ragdoll physics” to fall down
stairs or over railings when they have been shot, for example. Other games use
physics to enhance the core gameplay, especially for genreslike car racing, where
real-time physics allow the cars to behave realistically on the road and in collisions.
The Burnout series of racing titles uses incredibly real physics to create intense
multivehicle crashes.

Using physics-enabled ingredients in your levels can be a challenge. Until re-
cently, games used animated geometry to simulate the real-world motion of ingre-dients. A giant rolling boulder to chase the player was set by the level designer to
move between certain points or follow a prescripted path. It would behave exactlythe same way every time the level was played.

Refining the Player Experience 97

With the same ingredient using physics, the results of its movements become
much less predictable, and the boulder may careen off into a nether region of the
level, or the player may be able to block it by throwing a large object in its path. If
that boulder is needed to break through a wall to allow the player to access the next
section, both these cases will result in the game being stuck. This means that any
time you are thinking of using a physics-based ingredient for an encounter, you
must plan very carefully for how to constrain the situation and control the outcome
enough that the experience remains a positive one for the player. On the other
hand, if you spend too much time building fail-safes for a physics ingredient, you
probably would have been better off using a scripted sequencein the first place. Use
physics carefully, and in situations where it is appropriate.

SIDEBAR

Susan is given the task of implementing a physics-based puzzle in a level for
the action-platformer title she is working on. Knowing that the programming
team has worked on the technology for more than a year, she wants the puz-
zle to show off the depth of the code, without creating bugs or a part ofthe
level that might fail and stop the player from progressing. Her plan is to cre-
ate a bowling mini-game, literally stacking up pillars at the end of a long ramp
and giving the pillars real-time physical properties, so that when something
collides with them, they will fall over, and into each other, creating a different
set of events each time. She creates a simple script to detect when all the pil-
lars have been knocked over and opens a trapdoor in the room at the top of
the ramp when this happens. When players arrive in this room, they will find
that they cannot go down the ramp, but that a hole in the wall allows them to
see, and, more importantly, to throw things down the slope toward the pillars.
Susan places small mole-like creatures to emerge from the floor of this room
and attack the player. When the player whacks them with a weapon, the moles
curl up into a protective ball—in this form, the player can pick up the moles
and hurl them through the hole, where they will roll down the ramp and
smash into the pillars. In this way, the player can use the unlimited supply of
mole creatures to “bowl” with, until the pillars are knocked down and escape
is possible. The player cannot interact with the pillars directly, and so can’t
break the gameplay, but the physics allow a fun mini-game that relies on the
skill of the player and the luck ofhis throw to be completed successfully. As a
safety feature, Susan makes the pillars’ physical properties very light, and with
a high center ofgravity, so that the objects are very sensitive to collision and
will scatter very satisfyingly when hit by another object.

Game Level Design

ENCOUNTERS

Throughout this book, the term encounters occurs frequently. Encounters are the
times in the level where the playeris stopped from simple progression and offered
an opportunity to interact with the game in a meaningful way. The example in the
sidebar with the bowling challenge is an encounter. In a driving game, a simple turn
or kink in the road is an encounter—approaching at high speed, the player needs
to decide how to deal with it. Slam on the brakes, drift into it, or try to smash
through the fence? That bendin the road is a planned encounter created by the level
designer. A puzzle game designer may have different terminology, but when a new
piece falls down into the play area in Tetris, that is an encounter—a new element
has been introduced to the player and a decision or interaction is required to keep
the game going.

Encountersare about challenging the player. Very literally, they are about you,the level designer, in a battle of wits with the player. Or at least this is how it looks
from the eyes of a player. Encounters should test the player in a number of ways, for
example:

Physical Reaction: How fast can players move the avatar in response to what is
happening onscreen (Defender, Project Gotham, Tetris)?
Coordination: How quickly can players press different combinations of keystosurvive an encounter (Soul Caliber, Quake 3, Battlefield 1942)?
Timing: How quickly can the player respond to an onscreen prompt or match an
event in real time (Pa Rappa the Rapper, Dance Dance Revolution, Amplitude)?
Memory: How much information can the player memorize and recall later
when needed (Simon, Sam ¢ Max Hit the Road, The Longest Journey)?
Deduction: Using the tools and abilities available, how quickly or efficiently
can the player solve a problem (Myst, Where in the World is Carmen Sandiego?,
Harry Potter and the Chamber of Secrets)?

Naturally, combining different types of “base” encounters like these leads to
even more complex, and difficult, encounters that the player will be prepared to
face later in the game.

At a very fine magnitude, levels and the pacing that drives them are about bal-
ancing the time and distance between encounters. When not actively in an en-
counter, the player is generally in a routine activity—searching for ammunition,
commanding peonsto fetch wood, or resting so the character is at full health. This
is valid gameplay, butthe trickis balancing the intensity of a fun encounter with the
player-driven elements of exploration and recuperation

Refining the Player Experience 99

At this stage of design, a level designer needs to think about the kinds ofen-
counters—the situations, characters, challenges, revelations, decisions, or events
that the player will come to while moving through the level. Later these will become
the “bones” ofthe level, when it comes time to start designing the level on paper, as
we will see later.

CHALLENGING THE PLAYER'S GAME KNOWLEDGE

When thinking about the sort of encounters you will be throwing at the player, it’s
essential to consider what they “know” at that point, what was explained as intrin-
sic knowledge early in the book. As players work through a game, they pick up
knowledge about the game world and learn the rules about how to succeed. If they
are unsuccessful in defeating an enemy with a group of units, they will (if the frus-
tration level in replaying the encounteris not too high) change formation or tactics,
or even attempt something drastic to test the game and find out the best way to ac-
complish the short-term goal. On another level, games often impart information to
players explicitly. When the player character picks up a new weapon in an RPG,
there is often a dialog box that explains what it is and how it works.

Given this constant learning of the game rules by the player, the levels them-
selves should provide opportunities to test the player’s knowledge and skills devel-
oped along the way. Ifthe player has discovered how to defeat Blue Robots, increase
the number he has to fight. Once he has learned the technique to dispatching a
Blue, he will enjoy the greater challenge of taking on two, four, or eight at a time.
Then, just when he is becoming bored of fighting Blue Robots, introduce the Red
Robots, which require a new level of reaction and timing to defeat, or perhaps are
only susceptible to a new weapon just introduced in the level.

This may seem obvious—we have already examined the need fora steadily ris-
ing difficulty level afterall. The more subtle lesson here is that the difficulty cannot
simply be new gameplay encounters that require a player to face them blindly.
Skillful level design is knowing, in general, what the player has learned to a point in
the level and tune an idea for an event or puzzle there to make use of a rule or abil-
ity already known about. This will increase the player’s enjoyment in any en-
counter, rather than having the player feel tricked, or cheated into failure. To repeat
what was said in Chapter 2—as much as possible, the player should never be al-

lowed to blame the designer for failure. If players feel that the level designer has in
some way withheld information about how to succeed, they will quickly stop play-
ing out of anger. On the other hand, the more that players know they have been
given the tools to succeed, and just need to learn how to master them to progress,
they will not blame the designer and will be more personally motivated to try again.

100 Game Level Design

The other aspect of intrinsic knowledge acquired in play is that it’s not as fun
to learn something but not be able to use that knowledge.If the player is taught a
new spell, let him useit, even if it means being able to go back into a level previously
completed and using the new spell to access previously inaccessible areas. The Leg-
end of Zelda: The Wind Waker uses this technique with incredible success—the
player is often allowed to see the entrance to an area that is inaccessible untila spe-
cial objectis acquired later in the game. Once the player has the object and learns
what it can overcome, suddenly he has a huge amount of useful knowledge—re-
membering all the places he had visited but could not explore further that can now
be explored with success. Don’t just give the players an item that replicates some-
thing they already have,or that they have already forgotten about by the time they
can use it properly.

CREATING TENSION

A famous game designer once said that for a good level, “A gamer must be in con-
stant fear.” Although this is not the case for most games, tension (rather than fear)
is a very big part of what makes games fun. The same can be said for most forms of
human entertainment, where formsof tension are what keeps someone turning the
pages of a book until the end, or keeps a concert hall full of eyes glued to the stage
while watching an opera. In common usage, however, tension is something we
tend to avoid, or talk about in a negative light.

Tension doesn’t have to be negative however, and for the purposes of enter-
tainment, it usually isn’t. The kind of tension that is needed in a levelis natural ten-
sion—like the tension on a rope that is towing a car. It is simply a “pull”in a
direction with the possibility of failure, and as we have discussed, this is something
the level designer needs to be conscious of all the time—how the playeris being
“drawn” or guided through the spaces and encounters in the map. Once the player
has been hooked (by the visuals, or an intense opening encounter), the player is
tugged through the level like a fish on a line. Gameplayis this actof reeling players
toward their ultimate goal, or destiny.

Throughout this book, we will go into detail about how this line of tension is
created and used correctly. However, while you are at the stage of coming up with
the basic experiences and gameplay ofthe level, consider foreshadowing, lighting,
paradigm shifts, and music and sound.

Foreshadowing

Providing vague or suggestive implications of a future event and giving the player
partial information about the road ahead is a great way to seed tension in a level.

Refining the Player Experience

~~
101

The player may see the shape of the end-of-level boss moving through the trees in
the distance, or may read brief accounts of a terrible weapon scattered throughout
the playfield. Although not enough information to be useful, it will begin to suggest
something to the player. The more concerned players are, the more fearful an image
may begin to form in their heads, even if the threat they fear doesn’t really exist. Let
the players use their own imaginations to make your life easier. Sight lines are also
important. See if there are parts of your level that might support the player seeing
a section that they will not arrive at immediately. For instance,if the player starts in
a village, and must fight his way up a mountain to the evil vampire’s castle—show
the castle on the horizon. Make sure that the castle becomes a backdrop for events
in the game—scripted encounters where the player can’t help but notice the dark
silhouette of his enemy’s fortress getting larger and larger on the horizon. In com-
ing up with ideasfor the environment, consider the following:

® What elements in your level will support foreshadowing and sight lines? Are
there windows to see into the distance, or cameras and television monitors that
show rooms laterin the level?

® Can you place dying space marines who willtell the player character about the
nameless evil that lurks further into the dungeon?

® What format will clues and information come in? Character dialog, recorded
crew logs, or transmissions from HQ?

Lighting

Good lighting is a key to a dramatic level. It also helps with guidance and tension.
In Chapter 10, we will go into more detail about lighting, and how to use it in the
level. For now, the properties to consider are more general. What sort of lighting
will your level have? What kinds of sources are available? Certain effects and tech-
niques transcend the technology that produces the light. A brightly lit area at the
end of a dark room will guide the player to that spot. Likewise, a shadowy corner of
a well-lit room will almost always invite curiosity—a great place to hide a secret
item, or a trap. Draw the player through the map by highlighting areas with light
and shadow, contrasting colors, or subtle changes that draw the eye. When you
come up with gameplay ideas and encounters, think about the lighting conditions
and effects that will be part of the experience.

Paradigm Shifts

When the player gets complacent, an extreme shift in the conditions or rhythm of the
level can create useful tension. When the player has spent some time enjoying relative
safety, it might be interesting to take it away,if only temporarily, or introduce a new

102 Game Level Design

element that challenges the safety. Consider thestate of the player when thinking ofthe level structure and try to embed some shifts and revelations that will cause the
player to stop, think, and possibly even try a new item or skill for the first time.

SIDEBAR

In the CIA level of Splinter Cell, we created a room with no shadows—the
server room. To that point the players had not only enjoyed relatively shad-
owy environments to sneak through, they had become accustomed to it. To
shake things upalittle, the server room was intended to make players think
about different approaches and strategies to the dangers that waited for them,
including direct attack and causing distractionsto lure away patrolling char-
actersinstead of circumnavigating them using available darkness.

Music and Sound

Audio affects the player very strongly but it is very easy to abuse. Less is generally
more when designing in audio elements for the level. Think carefully about how
you will use sound and music, and how it will affect the player. Audio can

® Enhance an encounter.
® Provide contrast to a visual element to increase tension (creepy music playingwhen the player enters a room that is decorated for a child’s birthday party).
® Warn of an impending event.
® Become associated with a particular character or event (a recurring “theme

tune”).
® Generate emotion and unexpected reactions in the player.
® Help turn a visually dull space into a richer environment.
® Make mundane or repeated actions(firing a gun, giving a unit orders, flipping

a puzzle piece) more exciting,

Remember also thatthe player may not—or may wish not to—hear all the beau-
tiful soundsin your level. Unlike graphics, which are almost always essential for play,sound is very often considered secondary by players, especially music. Make surethat you don’t create puzzles or encounters that rely solely on audio, by also provid-
ing a visual element (a switch that visibly turns, a light that changes color, etc.) that
accompanies it, if it is an essential encounteror critical to progression.

Refining the Player Experience

~~
103

RISKS AND REWARDS

Interactivity should mean choices in your level. The more the player has the free-
dom to decide a course of action, the better. To make this a pleasurable kind of
choice (and not simply deciding between two near-identical options), you must
balance the risks and rewards of making decisions while playing. Some examples of
playing these two concepts off each other are the following:

® Monsters that drop powerful items (like repair kits or health potions) ran-
domly. If the player is at full health and has the choice to either engage these
monsters, or simply run past them, there is probably little risk either way. How-
ever,if the player needs health badly, attacking the monster might be a high-
risk decision made worthwhile by the reward (an item that replaces lost health).

® The simple act of choosing between two different branches in the linear path.
One corridor might be dark and spooky while another is warm and inviting.
The risk might be that the inviting route is simply inviting the player to turn the
corner and walk into an ambush.

® A system where weapons degrade over time, with use. The reward for using a
special flamethrower might be increased damage and range, as well as impres-
sive visual and audio feedback, but the risk is that it may explode after pro-
longed use. The player may never consider this until the odds get so high the
potential repercussions outweigh the benefits.

® Allowing the players a choice if they need something badly enough to risk more
than they would gain to get itis the basis for many gameplay systems and events
in game levels. The judicious but intelligent use of different levels ofrisks cou-
pled with large and small rewards can make all the difference. Consider how
you will introduce this into the level, and in what forms. Certain once-off en-
counters or challenges might have some level of risk and reward. Alternatively,
when designing ingredients for the level, or game, the player may have a choice
every time he faces that particular entity in the map.

REWARDS IN GENERAL

What line will draw the player through your map? Games often use a “reward sys-
tem” that allows the player to feel small degrees of accomplishment frequently in
the level. The best example is the ubiquitous “coins” that can be found in many
platform games. Collecting coins used to be the sole object of some levels or games
back in the Dark Ages of game design. More commonly nowadays, the collectibles
in a level are secondary—optional rewards—that the player can collect and when

104 Game Level Design

he has enough of them,is given a larger reward or can use them to “purchase”a re-
ward from a selection available.

Even if there is no ultimate purpose for acquiring collectibles in a level, the act
of collecting them can often be a pleasurable experience. Some games litter levels
with small rewards like emails to read, hidden areas to find, special characters to in-
teract with, or fun elements to interact with.

The point here is that when thinking about whatis rewarding in the level you
are designing, don’t just think about the large-scale rewards such as defeating a boss
character or figuring out a major puzzle. Think also of the moment-to-moment re-
wards, and leverage what is fun about your game’s overall design. If making the
player character jump is satisfying and fun, create reasons to do so in the level. If
shooting is fun, add many smaller combat encounters.If using an item is enjoyable,
reward the player for doing so by giving him reasons to do so,

SCRIPTED GAMEPLAY

A common responsibility for level designers is the need to be able to set up simple
“scripts,” which are very simple programs written in a language that interfaces with
the engine. Scripting allows you to set up complicated events that take what the
player does, or other elements in the map do, into account and activate preplanned
scenarios. Figure 5.7 showsa scripted event in the Unreal Tournament 2003 Editor.

FIGURE 5.7 A scripted event.

Refining the Player Experience

~~
105

By creating a script, you are creating what amounts to set directions for a
movie—directing actors to go to specific locations and perform specific activities.
Although very powerful, if incorrectly thought out or written, some scripts can
allow the player to do something unexpected, which will break or confuse the
script. Evaluate the technology available to you and begin to think now, of the sorts
of encounters you would like to script, rather than what you wantto happen natu-
rally, or for the player to be able to experiment with. The loose opposite of a highly
scripted levelis a systemic one (as discussed earlier in this chapter, and later by Har-
vey in the interview at the end ofthe chapter), and the choice about how and when
to use scripted sequences or scripted gameplay is usually determined by the team
based on the needs of the game.

USING ARTIFICIAL INTELLIGENCE

A large part of what makes a dynamic, challenging level is artificial intelligence
(AI). The actual study of Al is much more high-level and technical than in game Al,
where the objectiveis to provide a flexible system to ensure fun encounters for any-
one who plays—encounters with virtual opponents in the game world that can
match the abilities and tactics ofthe players.

Some games need no Al, such as puzzle games or adventure games where most
of the characters are static and pre-scripted to react to the limited number of options
the player has in interacting with them. Conversely, some games rely almost com-
pletely on complicated and realistic artificial intelligence, such as racing games
(where the computer-controlled drivers need to react constantly in response to the
changing conditions on the track or road) or “sim” games such as The Sims, Zeus,
and SimCity® where the Al controls populations of simulated beings that determine
the random encounters that players need to face constantly. Most games, however,
use Al to enhance the core gameplay or the feeling of being in a real environment.

States of Being

To better control and compartmentalize the behavior of game elements driven by
Al, often these elements are given a number of states that they can be in at any one
time. These states then determine the finer points of behavior, reaction to input, the
kind of actions available, and so on. An example of states can be seen in Thief:
Deadly Shadows. In this game, the player deals with opponents that have several
states of being that are linked to their awareness of the player. When an opponent
is patrolling the map, unaware of the player’s presence nearby, the opponent will be

106 Game Level Design

making no choices, simply following the path laid out by the level designer. This
could be considered a normal state of being for the Alone that it is in for most of
the time. If the Al notices the player briefly, or sees an object missing or tamperedwith by the player, it may enter its awarestate.In this mode, the Al begins to make
independent decisions. It can break away from the patrol path and decide to look
in the corner where the candle just went out, orit can decide thatit didn’t really see
the player after all. If the AI receives more definite input about the presence of the
player—if it sees the player clearly for X seconds orif it hears footsteps, it mayshiftinto an aggressive state where it draws a weapon and attacks the player. Now the de-
cisions being made are about eliminating the threat before it and self-preservation.
The AI may attack the player until it takes enough damage from him thatit decides
to flee to safety.

Decisions, Input and Output
These decisions are the crux of Al. The character is only as intelligent as the de-
signers have specified and the programmers have implemented. The Al in Thief
cannot, for example, leave the player money to come out of hiding becauseit isn’t
possible within the framework ofthe game, nor doesit help enhance the gameplayof the player hiding from opponents. Instead, the AI has a set of actionsit canchoose to perform based on what inputit receives. The more decisionsit has and
the more inputit is sensitive to, the more options it has—and to the player, the
more “lifelike” its behavior will appear to be.

Input
As a rule of thumb, AI ingredients in the map should have clearly defined input.
More specifically you,as the level designer, should be aware of what the ingredient
will react to, and what types of input will trigger a change ofstate or a particular ac-
tion. Common types of input are the following:

Sight: What visual elements is it aware of, and what changesin the visual envi-
ronment? How far can it see?

Sound: Can the AI detect sounds as they happenin the level? To what distance?
What sort of sounds will affect them?
Invisible input: The game will often communicate certain events to an Al be-
yondits natural ability to detect them. A common case is a character “hearing”
an alarm and reacting to it, despite being nowhere near it. This sort of input is
often needed to force the Al to do something in relation to the player’s actions,
or to always perform a certain function even if players have by accident strayed

Refining the Player Experience

~~
107

far from where they should be. You should be very careful about using this kind
of input. Many players will be annoyed by AI that is obviously “cheating” by
knowing exactly where the player character is, even though they are separated
by a solid wall, for example. Many FPS titles will use invisible input to allow the
Alto detect the player and pursue them more efficiently than having to con-
stantly scan for them visually. However, it can lead to Al that outperforms the
player in certain areas and must be tuned (or “dumbed” down to bea little
more random or inconsistent to balance out this kind of obvious omnipotence
on the part of the level ingredient).

Output
Good Al outputis critical for a great playing experience. The player can’t know
whatis going on inside an AI character’s “mind” unless that character informs the
player somehow. The more players are informed, the more they can make wise de-
cisions about how to handle the character, or what actions to perform to avoid, de-
feat, or aid it. To use the Thief example again, the AI characters have a large number
of “barks” or small dialog files that they use to inform the player of what they are
doing or thinking. A NPC that is aware of a visual change but not aware of the
player character may say, “Is anybody there?” A NPC that has seen, and is out to
hurt, the player character may yell, “Come back here so I can teach you a lesson!”
Barks are a great means to inform and update the player about the status and in-
tentions of an Al character while maintaining a level of realism and consistency.

Other forms of output include the following:

Animation: The Al ingredient changes posture, or uses a different animation to
indicate a shift in state or goals. This might even be a facial expression, or an
erratic movement on the part of a rival driver.
Symbols: A character uses a specific visual cue to inform the player ofan action or
a decision being made. The most famous example ofthis is perhaps in the Metal
GearSolid series of games where enemy Al characters have an exclamation mark

appear over their heads when they see the player, or a question mark when evi-
dence of the player’s presenceis seen, such as a footprint. The use of symbols in
games is borrowed heavily from comics and graphic novels where player emotions
need to be captured and exemplified in static images, and symbols are often used.

Game messages: Sometimes itis easier to simply notify a player of a change in
Al This often comes in the form of a message from the player character’s head-
quarters or an intercepted transmission

108 Game Level Design

No matter how it is facilitated, Al must provide outputto the player. In general,
there should be a fairly equal balance between input and output. The more an Al
ingredientis aware of, and can react to in the level, the moreit should inform the
player ofits intentions and current state of being.

Pathing and Patrols

As a level designer, the amount of control you have over the Al in your levels varies.
The previous sections should give you some guidelines about the most important
aspects of Al and how it affects the player’s experience. However, even if you don’t
have much input into how the Al is designed, you will no doubt have control of its
movement through the level. This is a critical part of level design. There is a huge
potential for things to go wrong in a map when care has not been takento optimize,
test, and refine the movements of the Al and the navigation elements it uses to getfrom point to point. Here are a few things to keep in mind when setting up the
movement schemes for Al in your level:

Overestimate the Room Needed for NPC Movements
When you are laying out the navigation routes for your level, it is always better to
give more room than you really think is needed—more room between individual
nodes, between walls in corridors, between obstacles. Situations will alwaysarisewhere congestion occurs in a “hotspot,” or any areas where the player will en-
counter NPCs or other mobile Al. Keep a mental note of where you think these
hotspots are and either make them roomy enough to handle multiple characters
trying to move around the space, or confer with the artists to make sure the areas
are built to the correct size to handle congestion.

Don’t Use Too Many Nodes

If you are using a system that requires the placement of nodes or waypoints that the
level’s AI will move between to navigate the map, make sure you don’t place too
many all over the level. Even though the specific density of nodes will differ based
on the system your Al ingredients use, or don’t use, to supplant the main routes, itis always wiser to keep the density higher for tough navigation areas like staircases
or corners and low for long corridors or open rooms. Games that use node-based
navigation paths can suffer from having too many pathnodes as the AI character
spends too much time picking between the numerous potential nodes for their
next destination.

Refining the Player Experience

~~
109

Avoid Patrols Crossing Each Other

You will often set patrols and scripted paths for AI when it is not directly interact-
ing with the player character. Make sure that these paths are kept separate enough,
and don’t cross each other too much, to avoid characters running into each other
and getting stuck, or avoiding each other only to get trapped in a corner or on a
piece of the level geometry.

Random Movement

When given the option for an Al element to perform random actions, or choose
randomly between several path branches, rememberthat it is good to have the
player be able to anticipate the actions of an NPC to some degree. This is obviously
more important in a stealth game, or an RTS where close observation of enemy
units shows patterns and allows the player to come up with a strategy for defeating
them. It is very tempting to have Al engage in random behavior to appear more re-
alistic or give it more character. Remember that a player won’t know something is

scripted to happen repeatedly unless they see it happen at the same time and place
over and over again. Random actions aren’t truly necessary for making a character
seem lifelike or thatit is making decisions on the fly. It is better to have a character,
unit, or group of Al ingredients that the player can feel more comfortable observ-
ing and engaging.

LEVEL GESTALT

Gestalt is an obscure word, generally defined as “a group of elements so unified that
it can’t be described as just a sum of all ofits parts.” In the context of a level de-
signer being responsible for putting all the elements of the game together, it is a per-
fect description of what a level needs to be. A game level needs to be something
greater than the gameplay, textures, props, and lighting within it. As these work to-
gether to support and enhance the critical encounters and tension in the level, they
combine to create an experience that transcends just an environment with things to
do—they become a world full of possibilities.

In practice, level design gestaltis about not focusing too much on one area, and
knowing what the player will willingly ignore, and what they will not be able to re-
sist. It is balancing the elements against each otherto create a greatlevel in the time,
and with the resources, allowed. You almost never have time to give an equal
amountof attention to everything in the level so seeing the environment as a player
will and adjusting it accordingly will become a frequent obligation.

110 Game Level Design

For now, just keep gestalt and the balance of ingredients in your mind as youthink about the level and what you will be putting in it. As the process continues,itwill become increasingly important to look at the level as the gamer rather than asthe creator, and pay more attention to things the closer theylie to the critical path.

SUMMARY

In this chapter, westarted by looking atthe level abstract—the summary documentthat contains the key elements the level needs to have. Although this is a good start-ing point, the level designer needs to start thinking about the task in detail.

® Overall flow and the critical path: will the players be given many choices androutes throughout the level, or will they move in a linear fashion from start to end?® Ingredients are the basic units of the level design. From enemiesto powerupsto props, the ingredients are the individual elements created by,or related to, alevel designer for combination into gameplay and encounters.
® Encounters are points in the level where the player has the option to, or isforced to, interact with the game. Encountersare made up of game ingredientscombined to create interesting or challenging situations for the player.® Creating tension is how a level designer keeps a player interested in the leveland wanting to play “just five minutes more.” Level tension is akin to a fishingline or a conveyor belt—it is the practice of keeping the players movingthrough the space toward their next objective,

B Gestalt is the fusion of elements so that they equate to more than just their total
parts. The right combination of tension, encounters, visual environment, story,and interaction can produce an experience far beyond the sum of a level’s ele-ments alone.

Ifyou haven't already done so at this stage, it’s time to record your thoughts and ideasin earnest. No matter how silly or irrelevant a thought is about your level, it can helpto writeit down, or sketch it, in a journal, Buy a hardbound sketchbook, available atany bookstore, stationery, or art supply store, and an ink pen. The act of committing toan idea in ink tends to make the writer think a little more intensely about what is beingwritten or drawn. By keeping this journal handy, you can quickly document suddenrevelations or brilliant gameplay ideas immediately and refer to them again quicklywhen you need to. Archiving, documenting, and Journaling are all skills beneficial fora level designer. You may have an idea that doesn’t work for your current project, buta yearlater, you may come back to it and realize it’s the perfect encounter for your newlevel.

Refining the Player Experience

~~
111

INTERVIEW WITH HARVEY SMITH

As a leader, game designer, and creative director, Harvey Smith has been mak-

ing games professionally since 1993. He worked at lon Storm’s Austin office
from 1998 to 2004, acting as project director of Deus Ex: Invisible War and
lead designer on the award winning Deus Ex. Before Ion Storm, he worked at
Multitude, an Internet startup in San Mateo, California. There he was lead de-

signer of FireTeam, an innovative multiplayer squad game that was one ofthe
earliest video games to feature voice-communications between players. Smith
started his career at the legendary game company Origin Systems, working
there for almost four years. Overthelast five years, he has spoken on these

subjects and others at a variety of conferences and seminars in Hong Kong,
London, Montreal, and the United States.

His projects to date include Deus Ex 2: Invisible War (project director), Deus
Ex (lead designer), FireTeam (lead designer), Technosaur (project director/de-
signer), and CyberMage (associate producer). He was also involved with pro-
duction of Thief3, Ultima VIII, System Shock, and Super Wing Commander 3DO.

Harvey, can you explain a little about how you came to be designing levels?

I got into video games professionally in 1993. When I signed on at Origin,
was a science fiction/fantasy writer with a recent publication credit and I felt
like my writing wasjust taking off. (I'd just sold a story and hadjust finished

a forever-unpublished SF novel.) I was also a major game junkie. I'd been

playing video games since Pong, and I had been playing and designing pen and
paper RPG’s (as a hobby) since I was 11. I was also into MUDs (multiuser
dungeons) and MUSHes (Multiuser Shared Hallucination) that allowed

players to create their own content (like Illuminati Online’s Meta Verse).

For six months I schmoozed at Origin, playing softball with the corporate
team, playing in various RPG campaigns with the people who worked there,
playing multiplayer games in the building with friendsat night, going to lunch
with members of various development teams, and finally even tagging along
on a skydiving trip with Richard Garriot and about 30 other Origin staff
members. All to no avail.

Eventually, I answered an ad in the newspaper that said, “Wanted: QA
Tester with knowledge of video games.” It paid $7 an hour, and I got the job
immediately.

ey

112 Game Level Design

Within a couple of days, I was sitting at a folding table in the back of the
QA Pit, flying Wing Commander missions on a 3DO.

I spent some time testing a few projects, then two things happened: I
spent 10 monthsas lead tester of System Shock, working with the amazing de-
velopers at Looking Glass Technologies, and (without being asked) I wrote adetailed, aggressive report on what was wrong with Ultima VIII. 1 learned
massive amounts working around Doug Church (remotely and for a while
face-to-face), and I attracted the attention of Warren Spector and Richard
Garriot. Eventually, Richard let me type up the “top 100 problems%o in Ul-
tima VIII, gave me the support of a programmer and a designer from the pro-ject, and wefixed a ton of problems before Origin released the CD version ofthe game (which was much more favorably received).

Having been in QA fora year and a few months, Warren Spector offered
me a job as an associate producer and Richard Garriot offered me a job asajunior game designer.

After a couple of short projects with Warren,I pitched a highly innovative
RTScalled Technosaur to Warren and Richard, which I had been working onon my own time with a small team from the company. Origin let me pull to-
gether an official team, a demo, go through several stages of pitching, then
enter full development,

After a year of formal production, however, the project was cancelled.
After that, I moved to San Mateo to work with Art Min and Ned Lerner

on a game called FireTeam. It wasa great move, like game design boot camp.I think I was employee #6, and I was the company’s only dedicated game de-
signer. Everyone there was a game designer, though, which was great.

During FireTeam, I worked closely with Art, Ned, Rob Fermier, and someof our “remote design compadres” (and game testers) were people like Marc
LeBlanc and Doug Church. To say that I learned a lotis a massive under-
statement.

FireTeam was great-a multiplayer squad game with voice support, back
in 1997. To this day, I am still very proud of that game and very happy with
all that I learned. I built almost all the levels, refined them throughout test,wrote script code for the training missions, hand edited files that controlled
animation playback, subbed in the game’s sound effects, and came up with
many of the game mechanics behind the sub-games, character classes,
weapons, and powerups.

—>

Refining the Player Experience

~~
113

It was the late 1990s, though, and the dot-com madness was beginning to
end.

So, as Multitude started transitioning from gamesto voice tech, I left,

moving back to Austin to work with Warren Spector on a new project that
was shaping up to be what I instantly understood to be “like Underworld in
the modern world.” We created Deus Ex there in the Austin Ion Storm office
with little attention from the more-chaotic Dallas Ion Storm office and little
attention from our publisher, Eidos.

Once again, I was leading (parts of) a game team, designing game me-
chanics for character systems, weapons and tools, laying out interface ele-

ments, writing parts of the mission/story script and building (A LOT OF) 3D
levels. It was great—very intense.

Still, the writer in me loved creating 3D levels (more so than the visual

artist, which is pretty weak).I created most of the maps for the NYC and Paris
missions in Deus Ex. I was inspired enough by my role to give a GDC talk
called Systemic Level Design.

By the time Deus Ex 2: Invisible War came into production, I was too
busy to work on levels, which made me sad, actually. I was project director,

recruiting and leading the entire team, notjust the level/game designers any
more. I also was effectively lead designerfor the first year of the project, writ-

ing the initial (ambitious) design doc.
So technically I was only a level designer on two games: FireTeam and

Deus Ex.
In the future, the level designer role will increasingly be played by envi-

ronmental artists, with the skills to create highly detailed and architecturally
meaningful spaces. But of course these people will always need to keep things
in mind like the map-flow, the dramatic rhythm ofthe encounters, technical
issues like occlusion and line-of-sight, et al. Thatis, until “world creation”is
an automated process—which it will be—driven by pre-arranged patternsre-
lated to architecture and gameplay.

At GDC (Game Developers’ Conference) 2000, you proposed that level design

would benefit from a systemic approach (where most often it is a series of special-

case encounters). Can you explain the theory behind this, and the pitfalls of the

special-case scenario?

A few years ago, much oflevel design involved very specific construction,
based around the whims of whoever was working on a specific part of a level

ny

114 Game Level Design

or game environment. For instance, if a level designer wanted to create a trapOr an encounter, he might create a unique object (like a table, a giant crane,or a door), add some unique scripted properties or behaviors to this uniqueobject, then test out the scenario in the game and,if satisfied, move on. Hisareas might end up similarin appearance, but radically different in terms offunctionality, from another level designer on the same project team, sitting atthe next desk over. This was how game maps were created, in many cases,circa 2000 and earlier.
And while this was an okay Way to construct levels, it had some problems:

Workflow Scale: This model is better for small teams, like one or twolevel designers, as opposed to 12 or even more that we might see today.
If you have 20 people working on environments, you don’t want them allto be spending time duplicating the same work. You don’t want 20 peo-ple creating identical doors; you want one person to create the door, thenshare it with the other 19. Similarly, if you've got to make a change todoor behaviors at the end of a project, due to some physics system prob-lem,for instance, you don’t wantto touch all 300 doors in the game. In-stead, you'd rather open up the object browser, select the archetypeinstance of the door and change it there, once. This saves time, whichequates to money or allows you to further polish and refine your game.Gameplay Consistency: The more level designers “doing their own thing,”the more variance featured with the behavior ofthe game’s tables, giantcranes, and doors. Theplayer has to re-learn how to use a door each timehe encounters one, which is most likely frustrating,tedious, confusing, andless fun. (Player: “Oh,I got killed bythis door because it crushed me. That'snot fair; I learned from the doorsin the previous levelthat doors pushed measide, instead of crushing me.”) In addition to decreasing the learning curveand making the game feel more intuitive or fair, the systemic level designapproach also enables some high-minded game design aesthetic goals re-lated to allowing the player to approach the game in a very deliberate,mindful, strategic way, rather than randomly stumbling from encounter toencounter. If the player can make some assumptions about the behaviors ofthings—due to their universal consistency—then the player can look acrossthe game landscape and formulate a plan with intention.

Refining the Player Experience

~~
115

Ideally, underthe systemic level design model, when the game team creates
something, it matches the collective vision and is then “published” for the en-
tire level design group to use.

Of course, special or unique objects are required for the game. Systemic
level design was mostly a talk related to ubiquitous game objects—trying to
make them more efficient to create and more unified in their behaviors.

Unique or “special case” objects and behaviors are still needed.
Now most game development considers this, often courtesy of some ob-

ject browser or mesh hierarchy tree. And even when I was giving the talk,

some people were like, “of course.” Some people already understood this con-

cept, intuitively or because they had worked in object-oriented coding envi-

ronments. But you would not believe how much resistanceto this idea there

wasin certain areas, from certain people; some game developers were overtly
hostile, implying thatthe systemic level designer was the death ofcreativity or
something.

Do you see the industry moving toward systemic level design, and how does it

apply to other genres than traditional action adventure games?

Yes, everything is moving toward global patterns. But we're going to move
vastly beyond object-oriented level design in the near future.

As a player, over time, I have been drawn to a specific component of the
interactive video game experience. I've crawled through airshafts, soared over
battlefields, and swum in subterranean rivers. I love exploration, not only of
environmental space, butalso of system space. The thrill of your agency as a

player—exercising your will over something and seeing the results, seeing the
world change—is still fascinating to me. Part of the fascination is somehow

connected, in ways I don’t fully understand, to noting the existence of a sys-

tem, providing input, and noting the reaction to your input. I believe this is

what game designers like Marc LeBlanc mean when they talk about the ex-

plorable space of a system.
While playing Underworld, which is still one of my favorite games ever

made, I had this experience:I fought a goblin, who was armed with a sling, on
a bridge within an underground tunnel network. The goblin’s sling stones

damaged me and I was already wounded, so I decided to flee. As T was run-
ning, I fell off the bridge and downinto the darkness. With a splash, I landed

in a river very far beneath the bridge. In the gloom above,I could occasion-

ally still glimpse the goblin. I swam along with the current (because swimming
—>

116 Game Level Design

against it made my movement much slower), and finally I pulled myself outonto a muddy embankment. There, in a small niche set against theriver,Itook stock. I seemed to be in some crude place thatfelt “off the map” to me.I had deviated from the game’s plot structure and quest goals. And that, inand of itself, was the most fascinating aspect of the game. To hell with savingthe princess.. . I was now exploring the game world according to my ownagenda. On the muddyriver bank, I pulled up some plants and ate them,healing myself. About the explorable space of the system, I wondered intu-itively, “Will the plants grow back?”
The future of “level design” (or game environment creation) is auto-generation. Someone will parameterize or seed things at a high level, and thesystem will create the world in ways that rely on lots of recognizable humanpatterns. Why do cities in Eastern Europe look recognizably different fromcities in the United States? When I saw the game Republic, | was amazed at theart direction: the city in the game looked like a city from Eastern Europe. Theelements that make such things recognizable can be quantified. Eventually,just by describing what you want in terms of terrain type, season, population,and culture, game developers will be able to provide world systems that gen-erate themselves.

I think I first started thinking about this after talking to Doug Churchlateone night. He has so often inspired me with a single sentence that provokesyears of thought.
But it’s not the production efficiency, cost savings, world size, or whateverelse that I find fascinating about this;it’s the system space. I'm deeply (almost

unconsciously) fascinated by the notion that greater levels of self-expressionand exploration will be made possible by the removal of the human agentfrom the world generation process.
Auto-generating world systems implyto the player in me a very satisfying,tantalizing whiff of further explorable system space.

Are there specific examplesoflevel design in past games that you think defined thecraft?

If you think aboutit, in the distant past most game map terrain just repre-sented distance and simple course-changing player-input with regard to fourdirections. Visualize the maze in PacMan . . . As more degrees of (3D) motion
—>

Refining the Player Experience

~~
117

and movement modes (like crouching) were added to games, the map terrain
got more complex in terms of requiring more complicated course-changing

player-input. Visualize some of the very “circular” deathmatch levels in

Quake . . . So, first off, I think you have to consider the time period (and the

state ofthe craft at the time) in determining which work was defining.
In Dungeon Master, in 1987, the pits in the game’s dungeon maps dropped

the player down into the next map, into a deeper part of the dungeon. (Falling
into a pit triggered a level load.) Given that the game was a level-progression
RPG, where the player was generally around the same toughness as the mon-
sters, this meant that the player could at times suddenly be facing weird,

tougher monsters. I thought this was brilliant.
Underworld had the most gloomy spaces I've ever seen, in an age before

advanced lighting.
System Shock taught me a lot about the value of internal consistency in

creating spaces that feel plausible and “lived in.” We applied this heavily to
Deus Ex.

Duke Nukem will forever stand in my mind as an epiphany. The movie the-

ater, with its bathrooms, were stunningly cool . . . I was literally giddy encoun-
tering them for the first time. It wasasif the Duke team has tapped into some

deeper form of catering to my “player expectation,” which is one of the most

powerful techniques in game design. (Sometimes games nail this and some-
times they thwart the player's expectations with dire results; an unfortunate
counter example is the unrealistic unified ammo in Deus Ex: Invisible War.)

Quake taught me a lot about multiplayer map flow. The game showcased
the value of nexusareas and demonstrated how to use vertical space in inter-

esting ways.
There are often poor moments as well. In Knights of the Old Republic last

year—a game [otherwise loved—there are levels that made me backtrack so

muchthat I was angry at the game,cursing the tedium, but hungry for the next
cool moment. Other players I've talked to mention the same problem. ... long,

empty runs through spaces that have already been explored or cleared.
—

Game Level Design

You have performed a number of roles in your development history. Often it
seems what level designers do is unclear to other team members. Do you have
thoughts on how level designers can foster communication with other depart-
ments?

Well, most of the positions on game teamsare actually in a state of constant
flux. New specialist positions emerge all the time.

A few years ago, I remember some people arguing that there wasn’t
enough full time work for an “Al Programmer.” Now some projects have two
or three people dedicated to the suite oftasks called Al.

Part ofthe problem with level design is that traditionally it has encom-
passed tasks in multiple disciplines: Game scripting is a high-level form of
what,in the past, would have been game programming. Map/environment con-
struction isa task that will, in the future, be solely the domain of environmen-
tal artists working with high-end 3D art software. Designing game mechanics
for weapons, tools, enemies, and environmental objects will soon bethe pri-
mary work of specialist game designers (along with other gameplay-related
tasks).

I think two things will help game teams:
First, before any work begins, the exec staff should lay out very articulate

job descriptions. This sounds like corporate fluff to some people, but it’s in-
creasingly important to clearly define responsibilities and boundaries. Start-
ing a game project without the workflow process and roles defined is the game
development equivalent of one of the major Hollywood blunders, starting to
film a movie before the script is finished.

Eitherof these mistakes ups your chances of failing in some major ways.
Second, game teams need to continue to embrace a cross-discipline

“strike team” mentality. As an example, imagine a temporary mini-team
forming to solve a set of specific problems: An artist, a programmer, the
team’s audio engineer, and a game designer get together to go through all the
maps and ensure that the sound volumes areset up in such a way that works
well technically with regard to the Al, aesthetically with regard to audio/sound
effects, and both technically and aesthetically with regard to the gameplay.

Not only does this solve problems very quickly, it also improves morale
(by giving people a sense of accomplishment for completing mini-goals) and

—>

Refining the Player Experience

~~
119

it forms better bonds between team members (since they have worked to-
getherin solving a problem and have learned to communicate better with one

another); this breeds cross-discipline respect and eliminates some ofthe de-

partmental us-versus-them mentality.
©2004 Harvey Smith

6 Common Level Design
Limitations

121

122 Game Level Design

In This Chapter
® Technical Limitations
® Environmental Limitations
® A Final Word: Constraints in Licensed Games
® Summary

to make a game level. Almost as important as knowing what to do when build-ing levels is knowing what not to do.
One ofthe things you shouldn’t do is jump right into designing a level once youhave a good idea. This might be okay for a quick test, or a small level you'll playwith friends for your favorite multiplayer game, but not if you want the level tohold up to the scrutiny of the playing public. Even though it may seem fasterto justdig in and start creating geometry, being part of a development team often meanspre-planning and coordinating your efforts with others. The amount of planningand design work varies from company to company—in some cases a level designernever actually builds the level; he just creates extremely detailed documents fromwhich artists can work to create the actual playfields and decorate them. In otherstudios, level designers are responsible for all aspects of a map or mission, from ini-tial concept to finished product.

Regardless of the process, all game developers need to contend with constraints,limitations, and conventions when making a title. Forlevel designers, the two mostimportant areas to watch out forare technical and environmental limitations.

I: this chapter, we’ll discuss the sorts of boundaries you as a designer will need

TECHNICAL LIMITATIONS

As software, all games run on hardware, commonly called the game platform. Thissimply refers to the device on which the games run, anything from a simple mobilephone, to a gaming console like the Xbox or PlayStation, to a cutting-edge homecomputer. The kind of platform your gameis going to run on will affect the con-tent you will be making for it. For a level designer, technical constraints don’t re-ally affect whatalevel is but do determine how it should be made.
Limitations from your hardware will come in all shapes and sizes. As a rule ofthumb, the biggest factors are the following:

® Memory
® Processing power and frame rate

Common Level Design Limitations

~~
123

Level performance
Polycount and performance
Level lighting
Artificial intelligence
Media format
Target and minimum specifications

EEE

EER

Memory
A machine’s memory is the amount of datait can store before it runs out of room
and needs to start overwriting someof it with new data. Frequently, the amount of

memory in the average PC or game console isn’t enough to hold all the data for a

single level, and so every now and then, the game will load thingsit needs from the

hard drive or disk drive.If this happens extensively, it can frustrate the player as the

game pauses every few seconds, or even worse, stutters frequently, as the level tries
to bring in all the new textures and modelsit needs.

Some games, such as Resident Evil, mask this process by showing a small ani-

mation between areas of a level where loading takes places. Frequently this is a log-
ical separation of spaces like a doorway ora staircase. While the loading takes place,

a small animation is played on screen to keep the player’s attention.
Other games will simply try to combine the small loads into fewer—but

longer—pauses in gameplay to keep the majority ofthe player’s experience smooth.

This can been seen in games where the player, unknowingly, crosses a threshold in

the level and everything freezes. Other titles, such as the recent Thief: Deadly Shad-

ows, mark where a load will occur with a special effectso the player is aware that the

game will pause to load when they enter the area. Developers often include a small

animating “loading bar” when a major level switch occursto let players know that
their machine hasn’t crashed and thatthe action will resume in a moment.

Neither of these solutions is ideal, so many developers have been pursuing
streaming content in an effort to avoid large pauses. This technique basically keeps
the stream of data open, but small, allowing a constant flow of information into the

level. This works if the player isn’t able to suddenly enter a part of the level that uses
completely different materials or actors—for example, going from the inside of a

gloomy sewer into a bustling urban cityscape. Careful level design can allow grad-
ual changes of environment, which makes streaming content much more viable as

an option, and reduces the player’s frustration and impatience.
Regardless of the final solution, part of your job as a designer of your game’s

environments is to make sure youwork within the memory limitations. This means

you need to be frugal in using assets in your level, and keep track of the transitions
between locations and situations. As you work, ask yourself these questions:

124 Game Level Design

Do I need a new art asset or actor here, or can I use an existing one in a new way?If I do use a new asset, how likely is the player to notice?
What can I do to ease the transition between visually separate locations?
Should my level be broken up into smaller maps? Whereis the best place forthis? Where will it be least frustrating for the player?

EE

Em

Processing Power and Frame Rate
Interactive entertainment is an industry based on computers. The games all re-quire massive amounts of computational powerto create realistic spaces, challeng-ing gameplay, and believable reactions from NPCs. All gaming platforms areconstrained by their available computer horsepower, from the smallest handheld tothe latest console.

The size of games and the limitations of the hardware don’t always progress in
parallel, however. Quite often, especially when a new graphics card or gaming con-sole is released, there is a period where game developers scramble to take full ad-
vantage of the new hardware. Later, toward the end of the hardware’s lifetime,
games have often reached the capacity of what can be technically accomplished.Modern gaming machines offer many flavors of processing ability—theCPU handles most of the mathematical calculations, suchas calculating projectile
movement, running the Al, or keeping track ofall the objects in the world. Re-
cently, graphics processor units (GPUs) have been introduced to take care of the in-
creasing need for “eye candy” in games. The GPU is used to calculate things such
as lighting and shading of the game characters and environment, displaying specialeffects and decompressing image files and textures from memory.Just like film, or television, games are really displayed as a series of still imagesupdated very quickly. For the most part, this is invisible to the player because of the
way the human brain works. Called “persistence of vision,” the principle is based
on our knowledge that when presented with a series of images, the brain captureseach for about one tenth of a second before processing the next one. If the se-
quence of images is slower than 10 per second, the viewer will see them as flicker-
ing and disconnected. Faster than 10 per second, and the brain begins to see them
as a seamless series of movement. In games and movies, each of these still images iscalled a “frame” and the speed at which they go byis referred to as “frame rate.”Movies are filmed at a set rate of 24 frames per second. Games, on the otherhand, have no standard frame rate. Each image is rendered individually and thensent to the television or monitor screen. The speed at which a game can render the
images and display them to the player is controlled by the processors available.

Level Performance

Games have a variable frame rate that is measured as frames per second (FPS). As alevel designer, you need to be aware of the impact your level has on your platform’s

Common Level Design Limitations

~~
125

CPU and GPU and how that will affect the FPS during play. Of all the potential
problems in a level, the frame rate is most likely to be the biggest. The average frame

rate of a game, and the levels it contains, is often referred to as performance. A

game’s performance is tied up in many factors but as the most visible indicator of
how well a game is running, most players consider a game with a higher frame rate

as performing better. A game’s performanceis critical for fast-moving games that
give the player a better edge over the competition the faster the screen updates. Play-

ers offirst person shooters such as Quake and Unreal Tournament often value FPS

more highly than anything when they are playing online against other players. For a

hard-core action player, 10 frames per second more than your competitor can often

mean the difference between winning and losing a confrontation.
In Chapter 4, we examined player ergonomics and the need to avoid frustrat-

ing the player. A consistently low frame rate will invariably annoy your players. In
fact,if the FPS ofa given level drops low enough,it will become unplayable, and
probably no one will wantto keep playing, even if the rest of the game is superb.

To keep the average frame rate of your level as high as possible, you need to be

aware of how much strain you are placing on the processor. Everything thatis
being shown on screen will cause a small strain on the GPU. Every enemyor NPC

that has to check for obstacles in its path is using processing power. The more of
these elements that go into your map, the bigger the workload you are giving your
hardware. As you prepare to build your level, you need to be aware of the costs of

your decisions in terms of frame rate.

Polycount and Performance

For most 3D games, every object in the world is made up of polygons, or “polys.”
These are the simplest shape, geometrically speaking, that can describe volume. A

polygon is really the space between three points that are called vertices. Every single

object or surface in a 3D level is made up of lots of polygons all joined along their

sides, and'the more complex the object the more polygonsit contains. When 3D as-

sets such as character models and world models such as furniture or trees are
broughtinto your map, they contributeto the overall polycount—the total amount
of polygons in the level. The overall count is not usually the problem but, rather, the

number of polygons that the player can see on the screen at once. If the game cam-

era is pointing at an area with numerous, very detailed trees, the processor must han-

dle all sorts of calculations relating to them, from working out what parts can be seen
and what can’t, to calculating lighting on their surfaces and the shadows they will

cast on the ground and each other. A simple forest level can quickly become complex

enough to slow the game to a crawl if you aren’t careful (Figure 6.1).

You can also run into a bloated polycount from having too many characters in

a single space in your level. Most game artists will use fewer polygons for secondary

126 Game Level Design

FIGURE 6.1 Too many polygons in this forest.

characters because they will spend less time up close in the player’s view, and it is
often more important to have more on screen to give a sense of vibrancy to the
game world. It is up to you to control how these characters move, where they will
be contained, and how much affect they will have on the level's performance. Some
games require a higher number of polygons for characters than in the surroundingterrain. For instance, many RTStitles need to support a huge number of units
moving and engaging each other on screen at once, and use simpler, low-poly ter-rain models to compensate. Each gameis different, and your concern must alwaysbe the enjoyment of the player, even if that means asking an artist to reduce the
number of polys in a model already made.

You need to watch for more than just polycount, however. Many of the tools
you have available to you as a designer can be overused. Special effects such as par-ticle emitters (Figure 6.2), which can be used for anything from smoke to a black
hole to falling leaves, are used more and more extensively and can help give the il-
lusion of a much more realistic environment. However, emitters can quickly gen-erate so many small images or models so rapidly, they can affect the performanceof your map as easily as too many high-poly decorations.

Common Level Design Limitations

~~
127

FIGURE 6.2 A particle emitter in a map, using small images
of flames in quick succession to look like actual fire.

Level Lighting

Lighting and shadowing is also a growing source of GPU strain, depending on the

title you are creating and how realistic the environments need to be. All game en-

gines and platforms have different waysof treating light and shadow, though there
is always a memory and processing cost involved in adding more and more light

sources to a map and expecting more complex lighting results. This is even more ap-
parent as more games seek to add new techniques for creating more realistic and in-

teractive lighting in their environments. Games like Doom 3 began a new generation
of “dynamic lighting” or lighting that is calculated constantly so that everything in

the game will cast correct shadows, evenif it is moving, and lights can be turned on
and off in the level with appropriate results to the affected space. Until only a few

years ago, most games had predominantly static lighting where the shadows and

light values in the world were “baked in”as the level was compiled. These shadows

then became a permanent part of the level, and even if you moved an object or a

door that was casting a shadow, rarely would the lighting change to reflect it.

The cost of dynamic lighting is extremely large, however, and often you will

need to limit the amountof lighting in your level to avoid processor load. This can
be challenging as you seek to create visually appealing spaces with fewer light

128 Game Level Design

sources than before. As the techniques evolve, the hardware limitations will lessen,but you should still make sure you don’t plan for an extravagantly lit area only tobe told by the programming team thatit will be impossible to create with your en-
gine’s lighting tools.

Artificial Intelligence
All the processing costs so far have been for visual elements of the level. Increas-
ingly, this workload is being handled by the GPUs that come with next-generationconsoles and PC video hardware. However, it is important not to forget that muchof what a processor does is handle things that the player doesn’t ever “see.” One
major culprit is Al

Video games have continually striven to give the player more realistic oppo-nents, but at a cost. As the range and speed of computer decisions increases—giving
game characters a better illusion of thinking for themselves—it means more proces-sor strain. Al has several ways in whichit uses the computational power ofits hard-
ware:

B Awareness
B® Decision making
B® Navigation

Knowing the relative performancehit ofthe actors you will be placing in yourmap isn’t critical, but it can save you a lot of frustration later when the game slowsdown and you can’t figure out why. Next, we’ll examine why AI can cause perfor-
mance problems.

Awareness
No matter what kind of opponents your game has, they need to have some aware-ness oftheir surrounding. How aware they are, and to what they are aware, deter-mines the frequency of calculations they need to make. Even a simple object will
most likely need to borrow the processor’s time frequently to check against a list ofconditions that will activateit.

SIDEBAR

A top-down strategy game features a “turret” actor that is designed to waituntil an enemy unit comes within 200 meters, and then fire on it until it is ei-ther destroyed, or retreats to beyond the turret’s range. Because the fastest
ee

Common Level Design Limitations

~~
129

units in the game move 100 meters per second, the designers decide to have
the turret check for units moving within its range every two seconds.

Performance-wise, this means that each turret in the game will perform a
check ofits surroundings twice a second. One of these turrets in a map will
produce no significant performance loss. After all, the modern processor can

process millions of calculations in just half that time. However,ifthe level de-

signer keeps adding turrets to themap, eventually there willbe a noticeable
lag in the game (every two seconds) as the CPU struggles to handle thousands
of range checks simultaneously.

The example level in the sidebar could be smoothed by making sure the turrets
don’t all check for enemiesat the same time. The engine could check each turret in

sequence every two seconds, for instance, which would mean it was constantly
working, but might avoid the noticeable frame rate loss of all turrets checking at ex-

actly the same time, 30 times a minute.
The situation gets even more complicated if the actor needs to make more fre-

quent checks. If it is decided that the turrets need to check for enemies within range
100 times a second, each of those actors you place in a map will have a greater drain

on the CPU, and you will be able to use less of them before the level’s performance
starts to suffer noticeably.

The more complex the Al is, the greater awareness it needs. The example of the

turret represents one ofthe simplest possibilities—it’s not really “intelligent” at all,

it’s just reacting to a certain set of rules. If we were to take the example of one ofthe
marine characters from Half-Life, we would find a much more complex awareness,
simulating senses such as hearing, keeping track of the positions of its squad mates
and registering the actionsof the player so it can react accordingly.

However, as complex as an actor’s ability to monitor the environment might
be, a larger part ofits computations are used in deciding what to do when it needs

to react.

Decision Making

The core of an Alis the ability to choose an appropriate action to events it is aware
of. This is really what makesit intelligent. Humans make an incredible number of
decisions every instant—even while wesleep. To try to simulate this is still science
fiction. So to create actors that seem to react realistically to the actions of the player,
and events in the world around them, programmers need to set up special code that

130 Game Level Design

allows a game’s characters or units to react in specific ways based on predeter-
mined conditions. Simply put, the more conditions, and the more possible reac-
tions, the more the AI will need to calculate awareness around it, and keep
generating a plan to react. All ofthese plans take processor time to work out.

SIDEBAR

To illustrate how an AI character might think, let’s use the turret example
again:

Deciding to make the turret a beefier unit in the make-believe strategy
game, the designers decide to giveit a greater degree of intelligence and sev-
eral types of weapons to use against enemies—a rocket launcher, a machine
gun, and a flamethrower for short-range combat.

The actor still checks around it in a 100-meter radius every two seconds.
Now, instead ofjust attacking enemies until they leave the area, the turret will
check against several conditions to present a much more difficult challenge to
opposing units. When an enemy comesinto range, the turret will now run
through the checklist:

Step 1: Is the actor in range an enemy? Ifit isn’t, then do nothing, butif it
is, then play my “activate” animation and rotate to face the target.

Step 2: Is the actor between 100 and 75 meters away? If it is, fire a rocket.
Ifit is 75to 25 meters, then shoot my machine guns at the target. If it is 25 me-
ters away or less, then use my flamethrower.

Step 3: How many rockets do I have left? If I run out, switch to machine
guns and wait until the enemy is within machine gun range. If I run out of
machine gun ammunition, switch to flamethrowers, which have no ammuni-
tion, but can only hit targets at 25 meters orless.

Step 4: Is the enemy still in range?If it is, return to Step 2 until it is de-
stroyed. Ifit is destroyed or out of range, play my “deactivate” animation and
go back to checking for enemies in range.

There are now four major calculations for the turret so it can make a de-
cision about how to treat a unit moving through its territory. Now when a
unit passes by, and the turret determinesit must be destroyed, instead of sim-
plyfiring at the unit until it goes away,the turret is constantly calculating dis-
tance and deciding whatsort of weapon it needs to use. Thereis a constant
stream ofdata that needs to be processed for each turret, and now the cost of
each one added is much higher. The level designer placing these turrets will
need to balance the amount of new multiweapon turrets in the map against
other performance factors.

Common Level Design Limitations

~~
131

You can imagine, then, how many calculations an actor might have to makeif
it needed to act like a real human. The extent of conditions it would need to react
to, the possible actionsit could choose from, and the need to keep making decisions
as things happen around it—all of these working tirelessly to provide a believable
intelligence and a fun challenge for the player.

In single cases, or distributed lightly around the level, the noticeable impact on
how a level runs may notbe affected by this new, more complex turret (from the ex-

ample in the sidebar). But enough of these placed around the map will noticeably drag
the performance speed down as the calculations strive for the processor’s attention.

Navigation

Navigation is the last major component ofartificial intelligence that you will need
to worry about in your game. Unless your game featuresa lot of static components
and opponents (such as pinball), youre probably going to need to support actor
movement and logical navigation through the map.

The worst possible case is that the Al uses some kind of constant awareness
check to maneuver through the level. Most game technology allows for “ray-
casting,” where an actor sends out a “beam” and then sees where and when it is in-
terrupted. The actor then knowsif there’s an obstacle in the direction of that beam,
how far awayit is, and often what sort of object it is, similar to the way a bat uses
echolocation. This can be extremely useful for incidental behavior, as when an NPC
needs to line up a shot on another character, or in a driving game where an Al car
is checking on either side to makesure it doesn’t hit the curb. For general naviga-
tion, this is certainly not what you want your levels actors to be using.

There are more cost-efficient techniques for setting up NPC navigation in your
level. Generally, however, most games allow the level designer to create invisible
paths through the map that Al units or characters can use to travel between certain
points. Often games call them waypoints or navigation points, whereas UnrealEd
uses “pathnodes.” These nodes exist as placeable actors in the game editor (Figure
6.3) but don’t show up in the game.

Navigation Routes

By connecting a series of these nodesin a line, you make a path that the game’s Al

can follow. In this case, the Al can use this path to navigate easily. Like following a
trail of bread crumbs, once the NPC reaches a pathnode along the route, the AI di-
rects it to the next in sequence. This means that the AI doesn’t need to make very
complex decisions unlessit has to leave the patrol route for some reason (like pur-
suing the player into a part of the level where the route may not go).

132 Game Level Design

FIGURE 6.3 A series of pathnodes in an Unreal-based map.

Using patrol routes to guide your AI will release them from having to check
their surroundings constantly and using the CPU too much. They will also allow
your units to be much smarter in choosing ways through their environments and
not get trapped behind bits of the scenery.

Routes, then, are especially useful for making the AI look like it has a destination
in mind to the player and for making sure they go where you want them to go. Usu-
ally, however, you'll wantthe unit to break from a route when it needs to, to pursue
an opponent, or to flee when hurt. To support free movementin the level space, youwill need some kind of network or predefined spaces thattell the AI how to avoid ob-
stacles and where important features are. These are often called navigation networks.

Navigation Networks

By connecting a group of points to each other within a space, you make a network,
as demonstrated in Figure 6.4. There are advantages and disadvantages with using
networks for NPCs to navigate. On one hand,a large, well-connected network that
spans most of the level will allow NPCs to accurately travel through the map. On
the other hand, the amount of decision-making for each NPC that uses the network
will increase. On a route, there are usually only two places to go from any of the
points along it—forward or backward.

Common Level Design Limitations

~~
133

FIGURE 6.4 A network of pathnodes.

On a network, however, an AI unit will need to decide where to go next at every
point along the way. If it is a very complex network, the unit may be trying to de-
cide between many possibilities every couple of seconds. In many cases, NPC units
are coded to use routes when they are simply performing their normal or pre-
scripted routines and then move on the network when they need to break from
their defined paths, as while chasing the player or running to investigate an alarm.

Networks can then be considered support for an Al route because there is an ex-

pense for using networks all the time that would be pointless to have for perfor-
mance’s sake.

SIDEBAR

We can examine the turret scenario as an example of using a layered naviga-
tion system to provide flexibility without compromising too much CPU time:

—

134 Game Level Design

In our fictional RTS, the lead designer has decided that the turret is too
easy to avoid simply by moving just outside its field offire. Thus, she has re-
designed it to move around the map on tracks, making it a much more for-
midable opponent, essentially a tank. The gameplay programmer goes to the
level designers and asks them how they need it to move.

The design team realizes that the moving turretis still a defensive unit,
and that mostly it will need to stay near critical areas and patrol around them
to fend off enemy attacks. There’s no need for intelligence on this level—the
awareness level and distance checking of the previous examples are still in
place. The unit simply needs to be able to follow directions that the designer
sets up, and when it needs to, use a preexisting network of waypoints in the
level to close the distance to an enemy. If the enemyis destroyed or outruns
the turret, it will go back to its simple patrol again.

The beauty of this system is the designer gets to lay out the patrol points
for the turret, making the turret flexible without needing to give it an actual
brain mostof the time. Onceit detects an enemy, it needsto think harder to
traverse the network toward its target, but eventually it will either be de-
stroyed or destroyits prey and return to its simple, pre-planned patrol path
that needslittle CPU support.

Again, the sidebar describes a simplistic case, but one that demonstrates a rel-
atively easy and effective setup for AI navigation. There are many emerging tech-
nologies for handling the need for more realistic Al in games. However, the lesson
remains the same—the more information you can give a unit in your level about its
surroundings up front, the fewer decisions it will need to makeas it moves and the
higher your map performance will be.

Media Format

This aspect of technical constraint is less of a concern than those already discussed,
although it does occasionally cause restrictions for the level designer.

This issue is one that affects console titles more than PC games. With PC
games, even if a game is shipped on multiple disks, it is only segmented until the
game is installed—most of the game information is generally written to the com-
puter’s hard drive. Internal hard disk drives are faster than portable media and the
amount of storage is based on an individual user’s machine, but often has much
more room available for game data. It is rare for a PC or Mac user to run a gamedi-
rectly from the CD.

Common Level Design Limitations

~~
135

For a console, even one with an internal drive like the Xbox, the game data is all
stored on a disk and hasto be read from the media when needed. This is where the
specific kind of media (CD-ROM, DVD, mini-DVD, or hand-held cartridge for ex-
ample) your game ships on will affect the size of the levels you will be creating and
the quantity (and complexity) of the assets you will have available to make them
with. These days, most games come on CD or DVD, which can be read fast enough
by the game hardware to load in large levels in a satisfactory amount of time. On the
other hand, a DVD data disk can hold more than five times the amountof informa-
tion that a CD-ROM can. It’s obvious, then, that if your game is shipping on a DVD
disk that you can plan on larger levels, or at least larger levels broken into a greater
number of loads. You will also be able to have higher quality textures, sounds, and
models than if your game were restricted to playing from a single CD or mini-DVD
(which the Game Cube uses, for instance). Every asset takes up memory on a disk,
and a large texture with a lot of colors will end up being larger than a smaller texture
that relies on fewer colors. The sameis true for sound, as high-quality stereo sound
will take much more disk space than will the same sound after a lot of compression
and after detail is removed.

Target and Minimum Specs

One ofthe fundamental differences between a PC and console for a game developer
is predictability. Every type of game consoleis a perfect clone ofits siblings. A game
that runs well on one Xbox,for instance, will run identically on another—on any
Xbox for that matter.

On the other hand, almost every personal computeris different from the next.
Even the same model and the same brand of PC may differ in drivers, internal
components, and overall performance. If you buy a game for your computer that
runs smoothly, it may be unbearably slow on your friend’s machine. This is one of
the greatest burdens PC developers have to bear—there is much less consistency
with the hardware when making a PC game.

To address this, most publishers insist on “target specifications,” which can be
found on the back or side of most PC game boxes. The target spec is simply the
ideal, average hardware setup required to play the game properly. If the player has
a machine with better hardware than the target spec, that’s great. However, a game
running on a machine that does not meet the specific hardware demands may not
perform well at all.

Along with the target specifications, most publishers will demand a set of min-
imum specs that tell the player the absolute lowest-end hardware that the game can
be played on. If the player’s machine does not meet these specifications, the game
will often be problematic enough to render it unplayable. This system relieves the
publisher of responsibility for someone who tries unsuccessfully to run the game on

136 Game Level Design

a substandard machine. Conversely, it also sets large limits on the game for the de-
velopers. The minimum specifications for your title may mean you haveless to
work with, or that you need to be smarter in designing and building your level than
a previous title demanded.

Before you even think about designing your map, make sure you know what
the performance specs for your game are. The ideal you need to design for falls be-
tween the target and the minimum range, and it will affect everything we have
talked about in this chapter so far. The lower the memory and processor require-
ments, the less you will have to work with.

/ Increasingly, game technology supports “scalability,” which simply means the engineis
smart enough to detect the settings and hardware the player is using and adjust the
game accordingly. Most often this results in the purely decorative elements of the levels
existing or not, or switching between high- and low-poly models depending on how
much each player’s computer can handle.

Performance Give and Take
If you are in a position where you have low hardware specs, you will need to prior-
itize the elements in your levels. Questions can arise such as these:

® Is it more important to have a more visually impressive environment than
complicated actor AI?

® What elements can I remove without affecting the experience? For example, are
there particle effects for torch flames where simple animating flame texture
could be used instead?

® Have the artists given me models with the most efficient use of polygons?
®m Can I get away with removing a particular texture, or having it scaled it down,

without compromising the visual impression?

ENVIRONMENTAL LIMITATIONS

Some of the most direct constraints a level designer deals with are environmental.
Every level is a location of some sort, and as such has decisions to be made about
the kind of location and the impact on gameplay. Let’s look at some of these pre-
design factors.

Common Level Design Limitations

~~
137

Locations

We discussed in the first chapter that a level is a container for gameplay. As such,
you need to know about the container before you plan to put anything inside. Just
as the dimensions of a suitcase will determine what you pack, the location of your
level is where you need to start because it will determine many important things
aboutits development. Your level's environment will determine the kinds of re-
sources available to you for creating gameplay. For instance,it will determine what
sort of unique landmarks you might use, the quality of lighting, the types of char-
acters that could be encountered, and most importantly, the physical scope that
might be needed so it seems believable. There’s a big difference in being asked to
build a dingy drinking hole in Tokyo and the luxury of setting your level “in a
Japanese bar.” Likewise being asked to set a level on an open desert planet like
Dune will probably require a greater size and scope than a suburban home will—
even if it’s just a matter of faking that scope, the workload in creating a convincing
desert horizon will be heavier. How will you keep the player from wandering all

over the desert, if your engine cannot render it? How will you make those con-
straints visible to the player without losing the open feeling?

It’s a rare game where a designer can simply choose the location of his level
based on personal preference. Factors such as the storyline, the number of different
environments that can be supported by the art team, the type of game, and the dif-
ficulty involved in creating some types of spaces, for example, will all affect the final
choices for a level’s setting. Some level design teams must work out the settings
themselves, whereas in other situations the basics are worked out by the game de-
signer and handed to each level designer to flesh out.

Environmental Settings

Once a location is set, you have a number of factors to pin down, depending on the
requirements and scope of the environment. If your level is going to be entirely un-
derground, you probably won’t need to worry about what the weatheris like. How-
ever, if you have any exterior locations—even simply windows looking outside—you
will need to determine the kind of weather, season, landscape, and lighting that the
player will witness. Simply choosing a day or night setting will affect a number of
things—the kind oflighting you'll need for exteriors, palette requirements for texture
artists, special effects such as rain or snow, volcanoes, or space debris. Consider also
that the environmental factors of your level are not isolated from each other. You will
need to determine how they affect.each other before affecting the level. For instance,
if you are building an outdoor area for your game, the lighting will depend on the

138 Game Level Design

weather and time of day combined. There are many examples of maps that feature
overcast skies, yet everything is crisply lit by direct sunlight. These things will stand
out to most players simply because they are unnatural representations of natural
scenes (see Figure 6.5).

FIGURE 6.5 Example of unnatural outdoor lighting.

Although the specific location ofthe level will dictate the kind of environmen-
tal restrictions you'll have to work with (or around), there will always be some
more common factors, for instance:

Local geography (desert, jungle, urban, volcanic, mesa, arctic)
Local architecture (common building materials, roof heights, construction
styles)
Time of day (midnight, noon, 10 minutes before sunrise)
Season
Weather conditions (snowing, perfect summer day, calm before the storm)

Gravity (normal, reduced, or even absent)

Common Level Design Limitations

~~
139

Creating a Reference File

Regardless of where the decision comes from, the first order of the day will be to
take what you have and begin a reference file. A reference file can contain anything
that shows the flavor of an area, or that you think might inspire you for your level.
If you need to build a map set in an Italian village in the 1940s, you’ll want to hop
on the Internet and begin looking for things that will increase your knowledge in
that area. Photos and drawings are good for planning the construction and deco-
ration of a level, but don’t overlook things like regional music samples, articles
written about the area, newspaper archives, anything that will allow you to get a
better feeling for what you need to build.

You can keep these items in a folder on your workstation, pin them up on the
wall behind your desk, or keep a loose-leaf binder with printouts.

A FINAL WORD: CONSTRAINTS IN LICENSED GAMES

If your game is licensed—if it is set in or uses concepts from a previously developed
world—than you will have an extra layer of constraints to deal with. Many design-
ers feel that working on a licensed title is automatically going to prevent them from
being creative. In many ways, this mayfeel true for you too. Licenses have owners,
and it means everything you propose for your levels will be looked at closely by
more eyes to make sure you aren’t overstepping a boundary, or creating a gameplay
that doesn’t fit the theme. Often great ideas will need to be shelved because they
aren’t appropriate for the licensed property. However, there are always positives to
working with existing material. For instance,as a level designer working on a film
adaptation, you may have access to an abundance of reference material from the
movie—set photos, construction plans, models, and textures. All these things will

help you create an environment that more closely resembles that which the player
has already seen—or will see—in the theaters. Ultimately, you are still only restricted
by your own creativity and ability to challenge the player. An original title can be
just as restrictive as an existing license.

SUMMARY

In this chapter, we looked at the limitations imposed on level designers bythe tech-
nology we use, the hardware involved in running a game, and the actual game de-
sign itself.

140 Game Level Design

There are two common areasof constraint in level design:

Technical, which includes the memory and processing power of your game
hardware, the kind of AI and active awareness of the level actors, and the sort
of media the game will ship on.
Environmental, which covers the specific requirements your map must have or
avoid, based on the story and the design elements featured in the level.

By identifying limitationsin the setting of a level, you will be fully armed to go
ahead and begin building a design.

the Level

ALL AT THREHP AREIRE4 Z

1

prs

= Designing and Documenting

141

142 Game Level Design

In This Chapter
Game Metrics
Different Metrics for Different Games
Generating Gameplay—Brainstorming and Loose-Leaf ideas
The Cell Diagram
War Rooms
Creating a Paper Design
Choosing Your Design Environment
Supporting Documents
Conceptualizing Your Level with Visuals

Reviews and Revisions
Getting the Sign-Off
Summary
Interview with Ian Fischer of Ensemble Studios

EERE

EEEEEERBEBR

chapter, we will cover the design process from start to finish, looking at
the sort of information you will need to arm yourself with, ways in which

you can generate and link ideas together to create the right player experience, and
how you can use the design process to evaluate the level before you commit to
building it.

At this point in the process, you should know what sort of game you're making
levels for, and what kind of level you'll be making, and havethis information in the
form of an abstract or design notes. You know what goes into a fun level, and you
have thought about the scope, the flow model, the ingredients, and the kinds of player
experiences that you want to have. Armed withall this, it’s time to wrap it all into a
design so you can start building.

To start the design process, the first thing a level designer needs to know is the
nitty-gritty information about the game that will set the boundaries of what the
player can reasonably expect to be able to do in your map, which we call metrics.

M ost levels tend to come in two parts—design and implementation. In this

GAME METRICS

Before you can begin designing in earnest you need to know what “numbers”
you're designing around. Most level design work comes after the initial properties
and parametersof the game, what are called player metrics, have been defined. This
is true for designing any kind of product—a carstereo can only be designed once
the size of the dashboard slotit is meant to fit into has been determined, for exam-
ple. Level design is no different; you need to receive many parameters before you

Designing and Documenting the Level

~~
143

can really start designing gameplay or creating a navigable environment. For many
games, 2D or 3D, the properties of the main character will be the biggest factor. For
instance, if you are designing an action adventure, you will need to know the met-
rics for the player character’s

Height and width
Walk and run speed
Jump distance (the horizontal distance covered with a jump)
Jump height (the maximum distance from the bottom of the character model
to the ground during a jump)
Interaction distance (how far away from a level or switch the player needs to be
before he can activate it)

7 A word about character dimensions—the visual size of a character is often different
fromthe actual collision data for that actor. For the sake of simplicity and ease of cal-

culation, many game characters tend to have collision primitives that block out where
they are in the game world. An NPC may have a simple cylindrical collision mesh in the

game that is slightly taller or wider than the actor’s visual mesh, demonstrated in Fig-

ure 7.1 Thus, it’s important that you know the real parameters and metrics before de-

signing. Ifyou are basing your designs on how big objects and characters appear in the

gameor editor, it’s best to make spaces like doors and corridors slightly bigger than
seems realistic in case the collision data is bigger than the actor looks.

FIGURE 7.1 A game actor's visual mesh and actual
collision mesh.

144 Game Level Design

Before we describe this subject in detail, a word of warning: Beware the game
designer or programmer who gives you a ballpark figure for vital game data. Game
designers can easily fall into the trap of not giving the level designers concrete in-
formation. Be persistent in trying to get the real numbers. It’s your job to create
solid, fun environments for the game, and if you don’t have theright information,
you may find yourself suddenly working on obsolete data. Game developmentis a
highly organic and iterative process, but the more you can solidify at the beginning
of the design phase for a level the better. You can even put aside some aspects ofa
level like secret areas until you know more about certain avatar properties, rather
than work with uncertain metrics.

DIFFERENT METRICS FOR DIFFERENT GAMES

There could be many more starting factors depending on what kind of game you
are making. You can’t make a doorway without knowing how tall and wide the
character (or characters) in the game will be, but many games don’t have doors, or
characters for that matter. For an RTS where the player may be controlling many
different types of characters or units, it may be more helpful to know the weight of
a unitif there are elements in the level that react to that aspect ofthe actors. If there
are elements like bridges that will crumbleif the playertries to drive a tank overit,
but are crossable by infantry, the level designer must know that data when creating
the design for a map that uses bridges.

A variety ofthese special cases could affect the metrics of the player avatar and,
consequently, your levels. Mostly, however, the things you need to worry most
about fall into three categories:

® Powerups and temporary modifiers
® User-definable metrics
® Equipment and environmental aids

Powerups and Temporary Modifiers

In addition to common data, there may be special case information that you will
want to know to build gameplay and create challenges in the game environments. In
many games, the abilities and actions ofthe player character can be enhanced tem-
porarily using “powerups.” The player in the level often collects these items, which
will give the player avatar a special ability, or change their normal properties in some
way,for a short while. A powerup might make a character bigger or smaller, allow
him to fly or to walk under water, or simply make him faster or slower. A lot of
gameplay comes from having these items in a level. You might create a ledge thatis
only accessible to the player while he is under the effect of a jumping powerup.

Designing and Documenting the Level

~~
145

These modifiers allow for a lot of gameplay. When players encounterareas that can’t
be reached using their normal metrics, they will know to look for something that will

increase their abilities in a way that allows them to access it.
Powerups need to be quantifiable before you begin planning a level. You may

not need the exact details of how they will work, but at a very basic level, you should
know these properties:

Effect (how will they affect the avatar?)
Duration (about how long will they last?)
Distribution (where in the level should you place these powerups?)
Availability (how common are they?)

These four properties should allow you to start designing a level with the

powerups in mind.

User-Definable Metrics

Some games will allow the player to generate a character’s metrics manually, or use
random allocations. Most typically, these are RPGs where playerscan tailor their
avatar’s visual properties such as height and weight, as well astheir abilities such as

jumping or running speed. A game that supports this level of customization will re-
quire the levels to be “water-tight” against the player possibly creating a character
that can jump overthe tallest walls or small enoughto fit into areas the level de-

signer had considered inaccessible.
The way to deal with these sorts of variable metricsis to determine their ranges.

If players can alter the height of their characters at the start of the game, whatis the

height of the smallest avatar they can create? Likewise, what's the tallestsize they
can create? Knowing both ends of a variable metric will allow you to build solid

geometry that keeps the players where they are meant to be.
Some examples of user-defined metrics are the following:

Character size
Character speed
Character hit points/energy
Character endurance (often affects inventory size)
Character shot/activation distance

All these examples can drastically affect how a player is able to interact and play
through a level, and you can probably think of a hundred more. These should be

capped early in production—knowing the limits you will need to deal with in your
levelas early as possible will make the process infinitely easier.

146 Game Level Design

Permanent Modifiers: Upgrades, Equipment, and Environmental Aids
Another factor to consider is the sort of permanent itemsthat the player might col-
lect during playthat will affect how they interact with your level. Many games allow
players to pick up new and more powerful items as rewards or waysto deal with in-
creasing difficulty. These items often grant the player permanent advantages. A
flamethrower weapon may allow the player to burn down obstacles instead of moy-
ing around them. A certain spell the player can buy may allow the player to float
across a chasm instead of needing to lower a bridge like you had designed. Even el-
ements within the level itself intended as decoration might be used to foil your best
laid designs—some games have suffered from allowing the player to move envi-
ronmental objects like furniture or crates and thus create ways to shortcutthe level
by hopping overa pile of chairs instead of finding the “correct” way through.

Much ofthis data comes from outside of your level specifically. Items intro-
duced in earlier levels can affect your map depending on whether the player
chooses to use them. Elements introduced in later levels may also affect yoursif the
player is allowed to return later. Games often disallow “backtracking” or letting the
player move backward through a level, for this very reason. It becomes difficult to
know what the player will be equipped with, or capable of, at any pointin your level
when they can come or go at will throughout the game. The lesson here is that the
more you know about the design of the game as a whole, the better you can plan for
problems occurring in your own level, and that’s the real purpose of design com-
ing before implementation.

GENERATING GAMEPLAY—-BRAINSTORMING AND
LOOSE-LEAF IDEAS

When it comes to putting your initial gameplay ideas down on paper, it is useful to
think of situations and interactions without worrying too much about when or where
in the level they will occur. Naturally, for most of your gameplay concepts you'll have
an idea of where you want them to go, or have a general sense of wherein the flow of
the level they will belong. However, if you think of a great level gameplay idea but
can’t immediately think of where it would fit, don’t worry. A good puzzle or battle
will be fun no matter where the player encounters it. If you worry too much about the
level structure and the specific placement of gameplay and game encounters at this
stage, you are liable to end up with more contrived gameplay. Essentially, you will be
putting the cart before the horse—letting the gameplay drive your level rather than
the other way around.If you develop an idea that doesn’t fitin the level you are mak-
ing, you will almostcertainly be able to useit in some other level later.

This is the concept of brainstorming—just letting your imagination loose and
trying to come up with the best ideas you can for your maps. Brainstorming is a big

Designing and Documenting the Level

~~
147

part of game development as an iterative process; you'll often find yourself sitting
back, or sitting in a room with your colleagues, and racking your brain to come up
with the best solution to a problem. For now, the only problem is how to create a

fun experience from what amounts to a few sheets of paper containing the basic
needs for your map.

Brainstorming requires that you open up your mind a little and put a check on

your self-criticism. If an idea of a level element orasituation isn’t immediately ap-
pealing, you can branch off and try a different version, ortake part of it and use that
to begin a new idea. The most important thing is that you record your thoughts. If
it’s a group brainstorm, use a whiteboard or hang up paper and nominate someone
to take copious notes from the meeting. If it’s just you sitting in the park or in your
office, keep your sketchbook or journal handy and do the same thing. The more in-
formation you put down on paperthe better.

At the end of a brainstorming session, you will have a better understanding of
what you want from the level, and what the level needs. You will also have a wealth
of notes or sketches you can choose from to build up the level experience. These are
“loose-leaf ideas” because they're usually unorganized, loosely grouped, or some-
times simply written on the back of a diner napkin. These ideas will be what you fill

in the holes of your level with—the small spaces between the major elements you
already have like story requirements or key encounters or locations that have been

set out by the level abstract. An example of a loose-leaf ideais shown in Figure 7.2.

FIGURE 7.2 Loose-leaf gameplay ideas from a level early in development.

148 Game Level Design

These ideas don’t all have to be gameplay. They can be “wow” moments,scripted sequences, or simple locations for the player to restock and take a breather.Ifyou are designing a multiplayer map, you may have an idea for some kind ofcoolcrossover architecture, or a place where players can see each other but not be ableto fire at one another, butat this stage only a rough idea of where it might go in theenvironment. Having a stock of these ideas and gameplays will help you as you con-struct the linear sequence of events in your level. Next we'll take a look at how
putting these ideas together in sequence using a cell drawing forms the backbone ofthe level’s design.

THE CELL DIAGRAM

Once you have a good collection of different gameplay ideas and situations, you canbegin to string them together to create an actual experience. One way to do this is
by using a cell diagram or “bubble drawing.” In Chapter 5, we looked at using cell
diagrams to pick out the rhythm points in a level, which is similar to what we willdo now,on a finer level. Figure 7.3 shows an example of a rudimentary diagram for
a level.

Dock AREA

FIGURE 7.3 A cell diagram showing major gameplay elements.

Designing and Documenting the Level

~~
149

With your loose-leaf ideas determined, you can begin to order them using a cell

for each major gameplay, encounter, interaction, or event, joining them together
with “connectors” representing smaller interactions or environments—corridors,
staircases, elevators, clearings, teleporters, and so forth.

These basic studies are a great way to quickly lay out the whole user experience,
and concentrate on the main areas of excitement and gameplay. Drawn roughly,

you can easily cross out, replace, or re-link areas as you evolve the design.

WAR ROOMS

A great method for the level design team to distribute shared gameplay, ingredients,

assets, or whatever they have atthis stage, is to create a war room—a room set aside

specifically for planning the game. Take a wall and divide it into areas that represent
each level. Then write down all the loose-leaf ideas and elements on “sticky notes.”

As a group, you can stick these ideas up individually in certain levels, either mark-

ing where certain gameplays occur, or just marking the introduction of a certain

weapon or item in the game (which level it’s introduced in will affect the others).

War rooms are excellent for the level design process because they allow the

maps to be designed iteratively, much as they will be built, but to include the entire

team. Everyone has a chance to make suggestions to the team, to add or replace

notes, to swap ingredients or encounters, or shift ideas a little. It also means that the

entire level design team can leave a planning session all knowing exactly what has

been decided. You should still have someone take minutes or keep track of deci-

sions for those not part of the meeting, but the data can be left on the wall for other
team members to look at, or for level designers to go back to when they need a re-
fresher on the game as a whole. War roomsare really just giant bubble diagrams
that can be accessed and modified by a group.

If for some reason you can’t set up a war room (many companies don’t have

conference rooms to spare for long periods of time), you canstill tackle this part of
the design process as a team using computer collaboration tools such as Wiki or
Microsoft NetMeeting®, which provides a virtual whiteboard that can be used like

a war room wall and saved at the end of a session.
If you are simply designing a map for an existing game, or for yourself, it’s still

a good idea to create a cell diagram to solidify your level’s basic elements—the

flow, rhythm, difficulty graph, and so on. You will be able to see problems and con-
flicts much sooner if you take-this step before you break out the graph paper and

commit to a more detailed draft.

150 Game Level Design

CREATING A PAPER DESIGN

Your paper design is the last stage of design before you're ready to go ahead and
start building. In essence, this is the blueprint of the space you are about to make.
Many problems may only become apparent when you begin building your level—
the paper design is a static, 2D representation ofyour map (Figure 7.4) and,assuch,
will provide the starting point for the iterative process of creating a game environ-
ment. Still, paper designs allow you to present your whole level to the rest of the
team and allow people to make comments and criticism about the level before you
begin construction so that you can revise your design immediately. It’s important
to go through this last processfor the sake of others as well as your own.

1 Heee
open
“ou {

5 A PTOF WER
3 pot TXSTIRAEL THE
ENTS TD LET HIM

=
OE!
Fro

FIGURE 7.4 Part of a paper design.

Designing and Documenting the Level

~~
151

Getting Started
Let’s take stock of what you should have at this stage:

A level abstract
A reference file
A collection of gameplay ideas for the map
An overview or bubble diagram of the flow of events

Get some graph paper and a pencil and get ready to put all these things to use.

Graph paperis ideal because it will more easily allow you to keep the scale and pro-
portions of the different areas of the map true to each other. Pencil works better than

an ink pen because it’s erasable and will allow youto revise the map more easily.

You can find graph paper at most stationery stores or online office supply sites. Gen-

erally speaking, you'll want a few different sizes—38/ x 11 is goodfor smaller areas or

for working out areas before committing them to the actual draft. Larger sheets are
better for plotting out the main level layout and can be rolled up easily for transporta-
tion. Ifyou run out of graph paper, the Mathematic Help Central Website has print-
able graph sheets for every occasion—point your browser to http://www.
mathematicshelpcentral.com/graph_paper.htm.

The actual process of drawing your design at this stage is generally up to you.
You might want to go one area at a time, and draw some sketchy boxes to deter-

mine the size and relative position of the level’s spaces, filling in the details later. Or

you may pick a room—the beginning, the ending, or somewhere in the middle, and

begin drawing more intricate detail. It can be quite usefulto start designing some-
where other than the beginning. If you work your way back from the end, you will

be less apt to pourall your creative juices into the first area of the level, and then be

forcedto fly through therest of the map to get back on schedule. It’s a psychologi-
cal thing, but it works.

What you're doing right now is often referred to as blocking in or drafting the

basic level. You are drawing the outlines and rough detailsof the level like a painter
does a sketch on canvas before actually painting in the real thing on top ofit.

Adding Details to the Level Draft

When you're happy with the basic draft and it contains all the spaces and places for

your bubble diagram, you can start putting in the details that will make up the rest

ofthe level. Level design is an iterative process. This means that you will continu-
ally find yourself moving elements, or adding ideas that you have as you design.
This is normal, and expected, but others often complain about this skill of the level

152 Game Level Design

designer. Much of the great gameplay of your level won’t be the things you've putin your sketch book already, it will be the things you add when you realize that youcan connect two areas in a really fun way you hadn’t considered before, or whenyou have a brilliant idea for a puzzle where you had planned to put a combat en-counter. Keeping things loose and sketchy in the drafting stage will allow you to addthese details as you think of them, or change elements easily to accommodate revi-sions that makethe level more fun. If you have an idea and then realize it doesn’twork, add it to your sketchbook or journal anyway—chances are you'll end upusing it years later in a level for a completely different game.Regardless of whether you deviate from the original plan or engage in acompletely organic process of coming up with the level draft on the fly, at this stageit’s advisable to begin paying attention to the details.
One thing to make sure of before you proceed is how much detail you are re-quired to include in your paper design. Some teams require only basic information—especially if the person creating the paper design is the same person who will build thelevel. Another factor is the overall experience level of a team. If your team is experi-enced, many “obvious” details can be left off the paper design. Some teams want onlywhat they consider relevant information going into the paper design to avoid havingthe designers spend too much time before building. Although the benefit of the paperdesign is drastically reduced if the designeris rushed to completeit, it is a fact of lifein game development. Thelead level designer should be ableto furnish you with thisinformation, or it may have been decided communally among the level designers be-fore the production process began. Knowingthis requirement will reassure you abouthow much you need to include and will also give you an idea of what is too much.

Making a Marker Key

Without a key to the little marks and blobs you are putting in your map to repre-sent all the stuff going in, chances are no one will know what anything stands for.If you are making a home-grown map,it still makes sense to use a key just so youwill remember what everything is meant to be when you forget about the map andpick up the design a few months later.
The beauty of a design key is you can represent any element with a symbol ofyour choosing as long asit is used consistently. There is no industry standard forsymbols, but the more you can make a marker symbol look appropriate to what it’smeant to represent the better. As long as you put a translation key on the pagesomewhere stating the function of the various markers, other team members willeasily be able to follow it. Figure 7.5 provides an example of a design key from anactual game level.

Designing and Documenting the Level

~~
153

A = Cuiuan
W : -osne

ef]: CAMERA (pirecron INDICATED)

[Hl = Healy Pexup
HY + sTaRs (Me WICATES DigcTion)

® : ELEVATOR

fi Amo
FIGURE 7.5 An example design key.

Characters: Patrols and Enemy Placement
Start finalizing your placement of enemies and opposing units. If they will be mov-
ing, plot out their patrol routes. If they spawn into the level or are created sponta-
neously by the engine in response to player actions, start deciding where those
spawn points will be. If the enemies will be in the level from the beginning, mark
them in on the map.

If it is important in your game to note which way things that can see or hear the player
are pointing—living enemies, security cameras, heat-sensitive turrets, and so on—give
them a direction indicator in the paper design that will tell your team members which
way they are facing, or other relevant information about their sensory abilities.

Moving enemies can have their patrols marked out simply by drawing a line, or
series of lines with arrows that mark the points they will be moving between. This
can get messy if you have lots of patrols intersecting, so consider using different col-
ors to mark in overlapping or parallel patrol routes. You may also want to include
other factors important for the enemy characters, such as the following:

® Detection Range (marked in as a surrounding circle showing how far they
can see)

® Initial behavior (on, off, idle, searching, bored, playing cards, sleeping,etc.)
m Special properties (special weapon or carried item, blind, hungry,etc.)
m Trigger conditions (patrols after 10 seconds, activated by Trigger A,etc.)

Puzzles, boss battles, minigames, and triggered events
You'll need to indicate wherever something special is going to happen to the player,
or where the player might activate a special situation in the level. If it’s simply a

154 Game Level Design

room with a puzzle, you can work out how much of the puzzle needs to be shown
on the actual paper map. If the puzzle uses moving platforms that the player must
leap on to cross a chasm, you'll need to mark in the chasm and the platforms, and
indicate where the platforms will be moving to and from. However, ifthe puzzle is
simply clicking on tiles in a wall to make them rotate to the same image, you may
just wantto indicate that with a star and a label reading “Rotating tile puzzle.”

The same can be applied to minigames. Minigames are games-within-games and
use simplified mechanics that force the player to stop and defeat a certain challenge
before continuing. A minigame can be a logic puzzle that occurs halfway through a
shooter, where the player needs to connect wires between different terminals to stop
a bomb from detonating. For example, System Shock requires the player to solve a
logic puzzle to unlock doors. A minigame may also simply be a diversion from the
main objective in the map. Legend of Zelda: The Wind Waker features small
minigames in several areas of the world as amusing distractions that the player can
choose to playif he has enough money. The designer marks these sorts of games on
the map and explains them in detail in the design document.

Boss battles are a particular type of minigame. Generally, the focus is on de-
feating one, or a handful, of unique opponents so you can progress to the next level.
A boss should be used as a gateway between important parts ofthe level, and that’s
why they often comeat the end, or midway through a map—a boss helps divide the
experience into acts. On a more subtle level, a boss encounter helps you control the
difficulty graph in your map by allowing you to increase the challenge level sharply,
while giving you a chance to reward your player highly on completion. Just the act
of defeating a tougher-than-usual enemy can be a hefty dose of accomplishment in
itself. If you have a boss battle in your map, consider drafting it as a separate design.
Chances are there is a lot of unique information about the encounter that will over-
load that area of your main map. Taking your boss battles or complicated
minigames onto separate sheets will help you maintain order.

Finally, it’s essential that you include in your map any kind of “invisible de-
vices”—commonly called triggers, or zones—that will trigger events or activate

components in the map. Many engines have different ways of handling player-
activated scripts and events, but they often share common variables:

Effect: This is the most important factor you need to indicate on your design—
what will the trigger do? How many doors will it open at once? Doesit awaken
a squad oftanks on the other side ofthe level? Usually the effect of the trigger is
called the event. An event can be anything—playing a piece of music, starting a
ceiling collapse, or causing the avatarto say a pre-recorded line. Using a consis-
tent labeling scheme is an easy wayto link triggers with their affected element in
your design. For example, if you have a door thatis activated by a hidden floor
switch, mark the switch as TRIG_DOOR_A and the door itself as DOOR_A.

Designing and Documenting the Level

~~
155

Keep this system consistent throughout your design (ideally your team will have
agreed on a common naming scheme for level elements, but that detailis often
oddly overlooked) so that you know where everything connects and other team
members can easily see how everything is wired together in your map.
Visibility: If the player needs to physically trip a switch or pull a lever, that is

called a physical or visible trigger. If the trigger is hidden from view or not part
of the actual level geometry and triggers when the player or some other char-
acter entersits area, that’s an invisible trigger. Either way it needs to be marked
down on your paper design.
Activation Criteria: Will the player shoot this trigger? Pull it with his whip? Is

the triggerset to go off when the player approachesit within a certain distance?
For this you only need to mark in the relevant data. If it is a proximity trigger,
draw in the boundaries of the activation area aroundit.If it is a building that
needs a certain amount of damage to trigger a collapse effect, write in the dam-

age number needed to activate it.

All games use some form of trigger/event system to tell the engine where the
player is, what’s he’s done or where he’s heading. Remember, it’s your job to sim-
ulate a world for the player, and triggers and events are the shortcuts that allow you
to do so. For example, we covered earlier how it gets very memory intensive to have
all the NPCs or puzzles in a map present all the time, just waiting for the player to
stumble on them. To counter this, level designers will often generate them when
and where they are needed based on the player triggering an event.If the player is
approaching the barracks of a castle, the guards can be triggered to appear inside as

soon as the player opens the barracks door. The player wont know that they
weren’t there a second before, but the engine will have been spared in rendering
and calculating the guards’ Al while the player was still on the other side ofthe level.

Atthis stage, however, concern yourself with simply marking down only the in-
formation you need about the triggers and triggered events in your draft design.

Resources: Inventory Items, Powerups, and Expendables

Many role-playing, shooter, and platform titles require that the level designer place
a lot of collectible elements, weapons, ammunition, powerups, bonus items, or
other objects useful to the player through the level.

Earlier, we talked about difficulty and how a level’s difficulty and tension can be
controlled partly by the distribution ofthings the player needs throughout the en-
vironment. This is your opportunity to actually implement that before the map is

even built. Even though much of the placement and fine-tuning of things such as
health Kits, spell scrolls, gold, ammunition clips, or save points will happen during
construction and polish, you can get a good sense of how you need to distribute
everything now.

156 Game Level Design

Like everything else at this stage, be clear what all of your markers mean. You
might also need to mark down how many of each item are in each location—many
games have pre-set item counts. For example, your game may only have health po-
tions that heal 10%ofthe avatar’s total health. If you wanted to put a secret room
in your map that would allow the player to recoup halfofhis health, you’d need at
least five potions in that one spot. You'll want to mark this on the paper design as
a numeral next to the potion symbol rather than drawing in five little potion sym-
bols in the room.

Another consideration is highlighting the placement of unique items such as
weapons, permanent upgrade potions, or resource locations for mining, rather
than “expendables” or objects that the player will consume and encounter again
such as health kits or ammunition. Using something such as a star or a different
color reserved for unique items can help modelers and designers both pick out the
important requirements in your map and the assets that may need to be created
specially for your level.

Scripted Sequences, Cinematics, and Other Information for the Player
An important part of level design is knowing what to let the player discover by him-
self, and whatto lead them to. There are many waysto give the player information
for free. Many games choose to do this through noninteractive “cut-scenes,” or cin-
ematics, which are like mini-movies that the player watches to learn crucial data.
Cinematics may be pre-rendered, meaning that they were created in an outside ap-
plication and are played to the screen as video. Real-time cinematics take place in the
level but take control of the game camera while they are playing. The handy thing
about these scenes is that they can show the player almost anything—they can show
events happening at the same time but half a world away, or show the player
avatar’s partner in trouble 40 stories above him. Time and location don’t matter
with cinematics. They also force players to watch whatis going on, generally allow-
ing them to skip over the scene if they don’t think it is important orit bores them.

Scripted sequences are interactive story elements in the game. A player may en-
counter a scripted sequence when he hears two characters conversing in the next
room, or when the player is able to initiate dialogue with an NPC without losing
control of the avatar or game camera. The benefit of a scripted sequenceis thatitdoesn’t interrupt the flow of the level if the player doesn’t wish it to. When over-
hearing two characters talking, the player may decided to just burst into the room,
guns blazing, and the NPCs will stop talking and react appropriately (unless it’s a
particularly bad game) by shooting back or taking cover. Similarly, if the player
walks up to a nonhostile character in the level and initiates a conversation as a
scripted event, he can simply walk away if he gets bored, or continue to explore the
environment while the NPC talks to him. Half-Life pioneered this method of giv-
ing the player information through interactive encounters, but many developers

Designing and Documenting the Level

~~
157

have found thatit is harder to do this in other genres. The drawback to scripted in-
formation tendsto be that the character can often missit (if he triggered the con-
versation in the next room but then needed to go into his inventory for something,
as an example) by accident. Sometimes the player may not even realize he’s trig-
gered anything at all. You need to be very careful that the player is going to see or
hear whathe needs to if you intend to give him critical information by scripted se-

quence. Forcing the player through a doorway to trigger one, giving many visual or
audio clues about what he has done, and including a way for the player to retrieve
information he missed later in another form all help to make a more ergonomic ex-

perience for your user.
You can also include information for players to see in a level through tradi-

tional means—a note they find on a body, an email on an open computer terminal,
or simply a warning written in a wall. There are countless ways to disseminate
knowledge to the player in a realistic fashion but still make him feel like he has dis-
covered it all by himself.

The important point here, however, is that these are all critical elements ofthe
map, and you need to mark them down in your paper design too. Luckily, it rarely
needs more than a simple box that states the purpose of the information. If your
game uses a schemeto keep track of cinematics, such as numbering them or label-
ing them in a certain way, include that information too. For example, if you won’t
be scripting encounters in the level yourself, you can include a small star and box
that says “Overheard conversation between Vampire and Zombie here” to indicate
to your scripter where and whatis occurring. The details of the encounter can al-

ways be worked outlater or described in a supporting document, which we will dis-
cuss later in this chapter.

Earlier we discussed about marking triggers and events in the map—very often
cinematics and scripted sequences are triggered by the player’s movements in the

map, so mark these triggers as you would others, and make sure the connection be-
tween a scripted sequence or cinematic and the trigger locations and conditions are
clearly illustrated.

Doors, Elevators, Stairs, and Other Connection Pieces

Common architectural details need to be recorded just like gameplay elements,
when theyaffect the player’s experience beyond just looking cool. Commonly, these
are connection pieces that take the player from one part of the map to another, or
provide breaks between areas for optimization purposes (like the S-corridors cov-
ered in Chapter 9).

Often the parts of a map that simply connect relevant parts of the gameplay are
added during construction. You may think, “I need to connect these two rooms,
but their floors are at different heights now,” and logically connect them using a

158 Game Level Design

staircase that transfers the avatar smoothly between floors instead of the corridor
you had originally envisioned. Many times, you will change major rooms or loca-
tions during construction and the parts that connect them will be forced to evolve
to meet the new layout. It may be tempting to ignore these pieces in the paper de-
sign, but rememberthat the difference between even mundane-seeming parts such
as a spiral or a linear staircase can be huge to the player. A spiral staircase is en-
closed, mysterious, and will make players climb cautiously in case they round the
corner too fast and run into a trap or enemy. Linear staircases will focus the player
on what they can see at the end, often motivating them to move quickly across the
stairs to reach the area beyond. The point is that on paper these decisions may seem
trivial, but they are just as important as the placement of your enemies and en-
counters in creating an overall effect on the player. Resist the urge to use simple
corridors and elevators when more appropriate (though time-consuming) connec-
tion pieces might be used.

For creating your paper design, you'll want to mark the following information
about connectors:

® Stairs should be labeled and indicate whether they go up, down, or connect
multiple floors.

®m Elevators should be labeled as to where their final destination is (Elevator to
B2), and if they aren’t active from the start of the level, how the player will trig-
ger them.

m Corridors and passageways should roughly indicate length, or if there’s no
room, use dashed lines for the walls to indicate that the space is longer thanit
appears on the page.

® Doorways and openings should be marked with relative size, and if the doors
swing only one way, you can indicate that too by a small arc that describes the
swing direction of each door in the frame.

Game-Specific Details
The last category of critical elements is the hardest to define—everything else that
your game requires! Every game is different, and the types of elements required of
each level are similarly unique. It may be important for you to put in light and
shadow,if you are creating a stealth game. If you are designing a level for a space
shooter, you may need to indicate the presence and direction of asteroids, orbital
debris, or nebulae. Examples of common miscellaneous details in paper maps of
varying importance include the following:

Light sources: windows, torches, lampposts, or luminescent snails
Tall obstacles: pillars, large rock outcroppings, skyscrapers, pylons

Designing and Documenting the Level

~~
159

Traversable obstacles: hills, crates, single-story buildings, low walls

Mission specifics: HQ, fire bases, hostage locations, vendors

Easter eggs: Secrets, hidden rooms, or messages, a group picture ofthe level de-
sign team

Callouts and Supplementary Information

If an area becomes too cluttered, create a callout (Figure 7.6) to one side, that shows
a more detailed view of the area where you can display the information with less
clutter. Or create a separate diagram in your sketchbook or journal that shows the
congested area more cleanly. The trick here is not to try to fit too much informa-
tion into the main paper map, which will just make it less useful to anyone trying
to read from it—everyone but you. Instead, use callouts on the sides for written
notes, expanded diagrams, doodles, or anything that will decrease the visibility of
the main map drawing too much.

Ji
{

ha/ \ |
FIGURE 7.6 An example callout.

160 Game Level Design

CHOOSING YOUR DESIGN ENVIRONMENT

When we refer to a paper design, it doesn’t necessarily mean having to put pen to
actual paper. Many programs allow youto create designs on your computer just as
easily as you can on graph paper, sometimes even more easily. Although we refer to
paper design as physically done on paper, using computer programs is convenient.
The benefit of paper and pencils is that it’s inexpensive and forgiving for the level
designer on a budget.

Visio is a program that has gained popularity among some designers for its abil-
ity to handle the process of creating top-down draft designs for levels. It’s actually
a flowcharting program, developed by Microsoft for business applications. How-
ever, its ability to create and connect a wide variety of shapes and lay down text and
icons easily makesit an ideal setup for paper designs. If you are more comfortable
using a program like this to create and revise your paper map, and it’s okay with the
people you are working with, by all means go ahead. The advantages ofa digital
draft are that you can easily edit it, print out multiple copies at different sizes, and
distribute it electronically via email or your local network.

Other programs also make good paper design environments. You can use
Flash, Freehand, or Photoshop if you know those programs already, for example.
However, make sure that you use a tool that’s common among your team, so that
other people can open thefiles easily. Not everyone will be able to open the “native”
files that your application of choice puts out, so make sure you can export your de-
signs into formats like .bmp, .jpg or .aifor distribution. If your lead designeris still
using Windows Paint to open images (and you'd be surprised how many are), then
a fancy Freehand file will be akin to handing him a design written in ancient Greek.

SUPPORTING DOCUMENTS

What are supporting documents? They are additional elements that will help oth-
ers use your map, or help your producer schedule the timeit will take to build your
map and to create assets, finalize the look of it, script dialogue for it, and all sorts of
additional tasks that go along with making a game environment.

Although you may encounter different, highly specialized support docs, by far
the two most common are the assetlist and the walkthrough, which we will cover
in more detail.

The Asset List

When you're the artist assigned to help a level designer create a map, the last thing
you'll want to dois have to read a paper design thesize of a small car just to pick out

Designing and Documenting the Level

~~
161

the special meshes and textures that it will need. You're going to wanta list of all the
special artistic requirements that you need to create, so you can get to work while
the designer continues to plan and build the basic geometry.

This is an asset list, and although the format isn’t important, it should contain
as much relevance as you, the level designer, can give your supporting artists. More
than visual artists will benefit from this. If your level needs special sound effects or
music, you will want to include these for the audio engineers and musicians. A sam-

Goi ple asset list (Assets.doc) is included on the CD-ROM in the Sample Documents
wma folder, but it barely needs describing—simply write a concise list of the assets you

predict you'll want, categorized by type.
Naturally, you won’t be able to predict everything you’ll need for the whole

level—a lot of that you'll realize later. However, even a small list with a few items
can keep the artists busy for a week or two until you have a better idea of the sorts
of objects, textures, characters, and sounds you require. Keeping a very brief list, in
fact, is much better than trying to think of every single possible item you could
want—potentially putting down a lot of assets that are doomed to change or be cut.
Stick to what you're sure about.

The asset list can be a useful document throughout early production ifit is kept
“alive” by adding things that you need, and possibly removing those that you don’t,
so that your colleagues have a constant reference for what the level needs at any
given time. However, you'll need to keep the artists aware of changes as they hap-
pen, and eventually you'll need to lock the document down—prevent any changes
occurring—when there is no more time to make assets that haven’t already been

planned for. Remember, you can always walk over to a team member and request
a new asset verbally too—but the list will help them notto forget.

The Walkthrough

Many people are not visually oriented, and even when they are, looking at a paper
design or mission abstract for the first time can be confusing and non-informative
if they haven’t been a part of the level's evolution. That’s whyit is helpful to create
a walkthrough document to allow others to get an immediate and clear under-
standing of what your design is all about.

A walkthrough can be a bullet-point list of the process the player will take to get
through the map. If there are many paths through, or the level allows the player to
do anything in any order, you might want to break the walkthrough up into para-
graphs defining each major area and the gameplay it contains.

Generally, however, levels tend to have a somewhat linear flow, and you can
create a good walkthrough by verbally walking the reader through (hence “walk-
through”) your map using short descriptive paragraphs and the occasionalsketch
if you feel you need to.

162 Game Level Design

Walkthroughs should at least outline the elements described in Chapter 3;
where does the player start? What does he need to go? What is encountered on the
way? What happens when he dies? And so on. It should also describe the experience
of the player—when should the player be feeling tense, and why? Is there a trigger
for creepy music at the top of a dark staircase? When should the player be feeling a
false sense ofsecurity, only to be ambushed by enemy bombers?

With a document like this you can more easily explain, or pitch your design to
the relevant people on your team, if you need to. You can also distribute it to peo-
ple helping you create the levelso that they have a better idea of the experience youintend the player to have. Even if you are not officially required to produce a walk-
through as part ofyour scheduled design time, consider taking an hour to write one
anyway. You'll find it a very useful tool both in allowing yourself to analyze how the
level should feel, or how well it appearsto deliver the experience you wantit to. It
will also allow othersto see your vision more clearly than they would simply by see-
ing your paper design.

CONCEPTUALIZING YOUR LEVEL WITH VISUALS

We haven't talked about concept art yet. Concept art is really just drawings and
sketches that allow you, and others, to see key areas ofthe level. Much like yourloose-leaf ideas illustrate the gameplay elements and encounters that you will be
putting into the level, concept art illustrates the visual style of your level, or at least
certain areas. Unfortunately, this is something that many level designers don’t feel
they are able to do, or should do if there are artists on the team. Don’t feel like youneed to be a world-class illustrator to create usable concept art; sometimes all it
takes is a few shaky lines to work out how high the columns in your atrium should
be, or a simple pencil sketch to show a modeler what you want the crystals to look
like in your cave map. Reference art can take you far in visualizing your level, but
it won’t substitute for your own imagination. If you have some drawing talent and
time on the clock to draw out some concept images ofyour level they will most cer-
tainly be appreciated, even if it’s just a happy player who stops to admire your well-
thought-out visual style. Figure 7.7 shows an example of rough level concept art.Even a few pieces of concept art can help you quickly determine a visual
“theme”for your map when you are readyto begin building. We’ll cover this in de-
tail later, but rest assured the old adageis true: a picture is worth a thousand words.
Or at least a thousand polys.

Designing and Documenting the Level

~~
163

esTHR HEHART,LALIT

AE LY

”

FIGURE 7.7 A level concept sketch.

REVIEWS AND REVISIONS

Okay, so you've been through the entire design process—from the bare seed of the
level idea through increasingly detailed steps to now, with your paper design com-
pleted, a freshly printed walkthrough and asset list, a folder full of references and
sketches, and an itchy editor finger. You're ready to go, right?

Well, almost, but not quite yet. If you're simply making a level for fun, you
might understandably have skipped some of the more complex or team-oriented
stages until now, feeling that they weren’t needed for a noncommercial map. That's
fine, but whether you're working on a Triple-A title, or making a deathmatch map

164 Game Level Design

for your friends to play after work, you need a review. You need someone else’s
input right now because you simply won't be able to evaluate your own work at this
stage, having been so deeply involved in it, and having spent so much time think-
ing about it. This is when you need the input of people you trust about the level and
how it looks and feels.)

If you are on a level team, this often comes in the form of a scheduled peer re-
view where you will sit down with your fellow designers, or a selection of people
from the team including leads, and talk them through your level so that they can
evaluateit. This is necessary for several reasons:

® The producer and leads will want to know your estimates of how long youthink it will take, the size and scope, the difficulty, and the general experience
for the player.

The programming team will want to know how much unique coding will be
needed for the level, and how much existing work can be used. They will want
to see the complexity of the map and hear how you will work to keep the frame
rate up and the calculations down. They will also wantto hear about how it will
be set up for character navigation, Al requirements, and anything else that af-
fects their work.

® The art and audio team will want to know about unique models, items, char-
acters, textures, animations, special effects, sounds, and music needed for the
level. They will need to know the environmental setting, locational informa-
tion, the look and feel of the map, and the mood you intend to create for the
player or players.

® The scripting and cinematic team will need to know how many cut-scenes
there are, how many encounters or special sequences will be required, how
complex the dialogueis, special characters, linear progression, and anything
that could effect the waythe story is told in both the level itself and the level’s
part of the overall game narrative.

Generally, you can expect one review of this type after you are done with the
design phase, but sometimes more. After a review you will get feedback that you
will need to decide whether or not to implement, and usually various members of
the team will ask you further questions or bring up queries about parts ofthe level
that concern them. You'll also get positive feedback too, about what your team likes
in your map, and generally reviews are a positive experience. If you are working on
a personal map, it’s still advisable to get the opinions of a few trusted friends or col-
leagues about your design; the feedback from fresh eyes will almost always help you
to evaluate your work better.

Depending on the results of a review session, you may need to revise parts of
your design to meet suggestions or concerns from the team. You should never be

Designing and Documenting the Level

~~
165

offended by criticism—it can only make your level better in the end. If a suggestion
doesn’t feel right you don’t always need to act on it immediately, but in general if
you break something down and rebuild it, it is going to be better because you have
a clearer idea of what it needs to be. If you have an art degree, you will know how
painful it can be to have to take a favorite piece of artwork down from the wall and
redo it at the demand of a professor, but you will also know thatit almost always
improves in the process. The review and revision process is like natural evolution—
it will force you to address problems that you didn’t see (or saw but secretly hoped
no one would notice!) and correct them, making for an improved level.

GETTING THE SIGN-OFF

Now you've had your review, you've implemented changes in your paper design,
walkthrough, and asset list. You just need to get the final sign-offif that’s required.
Generally, this is simply a verbal agreement from your lead or the producer that
you have finished the design phase satisfactorily and everyone is happy with the
level. The best thing about a sign-off is every party involved is held to the agree-
ment, and if someone comes back to you a few weeks later complaining about your
incredibly hard demon in the last chamber, you can point out that you told every-
one about that at your sign-off review.

It’s best to get email confirmation that your level has a green light before starting. Just
send out an email to your lead, or project manager and attach the level documentation.
This way, if there’s dispute over the level and its contents later, you can refer people to
the email you sent out stating clearly what the level was going to be. It never hurts to
have the evidence to back you up when people doubt your direction.

SUMMARY

This chapter described in detail the process for putting all your good ideas on
paper—so you can remember them, and so other members of the team can under-
stand them without your constant explanation. Although documentation and
paper designs are important, it is also important that you don’t try to getit all right
up front. Let evolution work its magic on your level, and leave mental room for
brainstorms, epiphanies, and revelations that naturally occur as you build and pol-
ish the level later in the process.

In the next chapter, we will look at how these designs get transformed into ac-
tual levels, and the lengthy processes, techniques, and rules involved.

Game Level Design

INTERVIEW WITH IAN FISCHER OF ENSEMBLE STUDIOS

lan, can you explain a bit about your background in games, and how your career
led to designing RTS games?

I'm a lead game designer at Ensemble Studios. I started at ES in 1997, at the
tail end of the development of Age of Empires. Most people don’t count “com-
panies” formed while they were in college and housed in the campus com-
puter lab as professional experience, so this was my first real job in the
industry. We've since done Age of Kings and Age of Mythology, plus three ex-
pansion packs.

Strategy levels—what’s different about them compared with other major genres,
and what elements do they share beyond the obvious? For instance, what are the
areas a first-person shooter (FPS) level designer might need to know when mov-
ing to an RTS game?

I think the primary shift going from working on something like FPS levels to
something like RTS scenarios lies in understanding where the experience
takes place. FPSs are immediate—that’s “you” in the game, running around
with a shotgun, ducking behind crates, and blasting zombies. RTSs are dis-
tanced—"you” aren’t really in the game as a unit, you're a “guiding spirit” of

many units.
This fundamental difference has broad impact on how a level designer

views making levels. In building a FPS level, you might be concerned with the
location and properties of a light source in attempting to achieve a certain
kind of shadow and mood in a room—you’re trying to use the light to make
the player feel a certain way when they get to the room. In a RTS, the lighting
is generally global; your concern here is in picking a light set that makes the
world look good and supports playability by keeping all the colors and units
visible to the player. In a FPS, you need to watch the relative scale of objects
because players will find a 10-foot tall door with a 2-foot radius doorknob be-
side a 3-foot-tall desk with a 16-foot pencil on it strange. In a RTS, you're only
concerned with the way the scale of any particular object impacts the entire
composition, not with uniformity of scale—some people notice that buildings
in RTS games are generally a lot smaller than they should be but the experi-
ence is abstracted and distanced enough to make it not matter.

Gameplay-wise, your concerns follow the same pattern. There isn’t any-
thing stopping you from porting any variety of gameplay from almost any

—>

Designing and Documenting the Level

~~
167

genre into a RTS level. Technically, you could make a jumping puzzle scenario
for a RTS pretty easily, for example. That doesn’t mean that you should. The
context that allows jumping puzzles to be whatever fun they are is found in an
immediate, visceral game (say, Prince of Persia). In a RTS, you don’t have the
same context; nobody wants to jump at just the right time to guide villagers
up a wall studded with conveniently placed outcroppings in Age of Mythology.

Are there specific ways level designers on an RTS game control the flow of events
or the movement of the player when the actions can take place on huge areas of
open terrain, and the player is controlling a wide number and combination of
avatars instead ofa single character?

With RTSscenarios, you generally make a decision on a level of player control
to design for early on. If it’s a wide-open scenario, the work can be done from
a sandbox perspective—you’re going to take a set of units and players, put
them in an interesting space, wind it up, and let it go. If it’s a tightly scripted
scenario, the approach is a lot more of a director’s perspective—you want to
have a specific unit arrive at a certain location and be exposed to a set event at
a known time.

The latter obviously needs more control of movement and events. Tech-
niquesthat provide this in other game genres can generally be applied to RTSs
too. A FPS might use corridors and one-way doors to funnel a player toward
specific locations—mountains and ravines can do the same thing in a RTS. A
FPS might not allow you to pass through a door until you get the key for it—
a RTS where the player begins on an island with a boat hidden somewhere on
the coastline is pretty similar.

What resources do you find useful when designing and implementing game
spaces? Where do you go for inspiration?
Everyone doesthis differently. I'm pretty random about it; I'll read a book orsee
a movie or play a game or get involved in a conversation and some aspect ofit
will pop into my head as being something that could be cool in whatever I'm
working on. I try to do a lot of analysis and “idea porting” with this—if I play a
board game with a cool mechanic,I try to figure out how I could move some-
thing like it into a RTS space; if there’s a popular movie out,I try to figure out
why it’s popular and how I couldtry to provide that in a game, and so on.

I'm one of those guys who has to write all this crap down, so I always have
a bunch of napkins and torn box flaps and receipts with cryptic scribbles all
over the place. My wife still thinks it’s strange to find grease pencil notesall
over the tiles in our shower too. ..

—>

168 Game Level Design

What is the way Ensemble processesa level design through to completion? What
sort of roles do level designers perform, or do you even have level designersin the
traditional sense (handling both aspects of designing and building game envi-
ronments)? .

At Ensemble, all of the designers are generally involved with scenario cre-
ation at some level. We usually have a group of designers in charge of making
the scenarios and one designer in charge of overseeing thesingle player game;
anyone left helps with ideas and feedback.

Our scenarios begin with a “tear sheet.” This is a one-page document put
together by a scenario designer that provides the basic information: a simple
sketch of the map, a few sentences on how the scenario will play out, and a
hook. The hook is a sentence or two describing the unique gameplay the sce-
nario is going to offer—*“in this scenario, the world has cracked in half and the
player can only help his ally by sending flying units,” “in this scenario, the
player starts with only a priest and hasto convert all ofhis units,” “in this sce-
nario, the sun has gone out so blackmap reappears over places the player has
explored,” and so on.

Once we have a few tear sheets, the designers on the project get together
to beat on them. Concepts that don’t seem fun (“in this scenario, the player
hasto find his way through a maze. . .”), that require too much supporting
work (“for this scenario, art will need to make 20 new unique monsters. ..”),
or that have technical issues (“inthis scenario, the player leadshis army of one
million high-poly units.. .”) get modified or axed. The keepers are assigned
to designers as “first pass” tasks.

A first-pass scenario is a rough version of the scenario from the tear
sheet—no polish, no cinematics, no voice-over, no glitz, just a crude blocking

ofthe scenario with whatever assets are at hand. Ideally, this should take no
more than a dayto put together. Essentially, a first-pass scenario provides us
with something just one step up from the tear sheet—it’s used to see if the
game we had in our heads when looking over the tear sheet matches what we
get when we see it in-game. The real purpose of this is to backstop and prevent
us from spending a lot of development time on something that just isn’t ever
going to be fun.

Oncefirst pass is complete, the process goesto the cleverly named “sec-
ond pass.” Second passis an actual construction of the scenario, minus final
polish. Ideally, it takes a week or two to get the initial version of this together.
This version then is cycled into playtesting, where it will stay until the final

—>

Designing and Documenting the Level

~~
169

stages of the project. Once in playtesting, the scenario gets beat on bya vari-

ety of players who comment on what wasfun or boring, difficult or easy. This
feedback goes to the designers, who iterate the scenario and put the new ver-

,
sion back into testing.

When a scenario has been tested enough and the gameis in a stable state,
the second-pass scenarios transition into final pass, where the designers add

any finishing touches (custom art, voice-over audio, in-game cinematics) that
didn’t creep in while the scenario was being playtested.

Do you have any words of advice for designing and building strategy
environments?

You can’t make things easy enough.
By far, the most common mistake with the biggest negative impact on a

scenario is the difficulty. Designers are gamers and they tend to be pretty
good players. Plus, the opinions that they're generally most exposed to are
those ofthe hard-core guys (because they're the ones who go out and post on
forums). It’s easy to start thinking of yourself as an average playerorto as-
suming that everyone thinks the way the players on a certain forum do. It isn’t
the case. For every person who makes a post about a game being too easy, 20
stopped playing because they couldn’t get past a level.

“Noteasy enough” can also be “too confusing.” I've played countless sce-
nario submissions that were just bewildering. When you ask the designer what
was intended, they'll often point out something you missed entirely—"“oh,
didn’t you see the monk up on thehill, you were supposed to follow him. ...”
No, I didn’t, and neither will 80% of your audience.

Make everything as simple as you can.If there’s something players need
to see, make sure there is no way they can play the scenario and not seeit. If
there is something they need to understand, make sure it’s blatant (and engi-
neer in safeties that remind them if they do things that show they obviously
don’t get it). Get as many new or casual gamersto playtest your stuff as you
can—it’s very difficult for people who work on games every day to put them-
selves in the mindset of a new gamer.

The enemy of “good”is “perfect.”

(Thanks to O. Wayne Isom for those words of wisdom.)
You can block out a scenario in a few hoursif you know what you're

doing, but you can waste an entire week just trying to get the shrubs on a map
—>

170 Game Level Design

placed so that everything looks “perfect.” Don’t. Orat least don’t until every-thing else is done. Build the minimum you need to test out the scenario con-
cept to start. If that’s fun, spend the time you need to revise the level until it’s
“good enough.” Worry about “perfect” at the end,if at all.

Shooting for “perfect”is a great way to get a campaign with one awesomescenario and 29 messes.

“Different” can still be “crappy.”
“Butit’s different” seems a common defense for scenarios that are unusualbut not fun. Different is great. If you manage to put together a scenario that
is different and fun,it'll be well received. But different cannot stand on its
own. Pay attention to what is fun about the game you're working on and con-sider what different experiences you can offer that still support this.

At the end ofthe day, you can make the most different scenario ever seenby man and if I'd rather eat a handful of bees than play it, ’'m not going to tell
all my friends to go out and buy your game.
Start with a plan.

Starting the scenario development process with a rough idea of what you're
targeting makes the job vastly easier than just sitting down and firing up the
editor. Takethe time to do a rough description of the concept, even if it’s justto keep you focused.

Be merciless with your ideas.
Just because you've spent hours working on something (or will have to spendhours redoing it if you make a change) doesn’t mean you have somethingworth shipping. Learn to recognize when a concept you've been working onisn’t going to work out. Kill these ideas and move on.

8 : Using a Level Editor:
Building a 3D Space in UnrealEd

171

172

ie
ON THE CD

Game Level Design

In This Chapter
® Installing and Opening the Editor
® Starting a New Map
® Undo and Redo
Viewing the Level in UnrealEd

% Working with Level Geometry
Placing Actors
Testing the Level
A Final Word on Grids, Snapping, and Clean Geometry
Summary

comes with the Unreal engine as an example ofa level editing environment.
Among all of the commercially available level editorsatthis time, Unreal Ed (the

level editor application that comes with the engine) is one of the most popular, pub-
licly documented, and user-friendly game editors available. Most of the techniques and
procedures coveredin this book, however, also apply to most other game editors.

A fully functional version of the latest Unreal engine and UnrealEd are in-
cluded on the book’s CD-ROM. You can follow along with my examples and use it
to experiment by making your own levels.

Temes this chapter, and the rest of the book, we will use the editor that

INSTALLING AND OPENING THE EDITOR

¢c
ON THE CD

First, make sure the Unreal Runtime Demo (included on the CD-ROM) is installed
properly. An instruction file is included in the same folderas the installation file if
you need help during the setup process. Once installed, open the editor by openingthe engine directory (by default, this is C:/ UnrealEngine2Runtime) and double-
clicking UnrealEd.exe in the System folder. This will start the editor with an emptyenvironment to work in.

When you open UnrealEd, you will be presented with a staggering array of icons
and windows. Don’t be put off; you will need to know only a handful of these but-
tonsto create yourfirst levels. Figure 8.1 shows a snapshot of UnrealEd afterit loads.

Using a Level Editor: Building a 3D Space in UnrealEd

~~
173

CEE

FIGURE 8.1 UnrealEd at startup.

STARTING A NEW MAP

When UnrealEd is launched, it begins by opening a new map. However, if you
need to start over when working on a level, you can press the New Map button at
the top left corner ofthe screen(the file group, as shown in Figure 8.2). Ifyou wish

to load a previously saved map, you can click on the Load Map button next toit.
The last button in this group is a critical one, Save Map, which will save the map
when you press it. If you haven’t saved the map before, a save screen will open and
allow you to enter a filename. Once the map has been saved once, pressing the save

button will simply overwrite the previous version. The following keyboard short-
cuts can be used instead of the icons:

Ctrl + O: Open Map
Ctrl + L: Save Map

174

Sv
71

Game Level Design

FIGURE 8.2 The File
button group: new, load,
and save.

Clicking on File in the menu bar at the top will allow you to Save As (also available as the
keyboard shortcut Ctrl + E), which will prompt you for a name every time (Figure 8.3).
It’s a good idea to save your maps frequently in iterations. For instance, ifyour map is
called ElephantHouse, you should save your map as ElephantHouse_I, Elephant-
House_2, and so on. This way, you will always have a recent map to revertto ifsomething
goes horribly wrong with the version you are working on. UnrealEd hates spaces in file-
names, so make sure you use an underline (_) ifyou require a space in the filename.

UnrealEd automatically saves your map every five minutes. Each timeit does so it
will save it to the Maps folder with the name AutoX, where X is a number from 0 to 9.
It will start with AutoO and keep saving in increments until it reaches Auto9, after
which it will save over Auto0 and continue the pattern. The best way to find out which
is the most recent auto-save map isto check for the most recent save time in Windows.

FIGURE 8.3 The File menu.

Using a Level Editor: Building a 3D Space in UnrealEd

~~
175

UNDO AND REDO

Two other important features to know early are the Undo and Redo commands
(Figure 8.4). Like most applications, UnrealEd allows the user to correct a mistake

by clicking the Undo button and going back one step, or action, in the history of
what the player has done. The editor supports multiple undo steps. If you acciden-

tally click Undo when you didn’t wantto, the Redo button will move forward one

step at a timein the action history, until it reaches the last action performed in the

map. Keyboard shortcuts for these commandsare as follows:

Ctrl + Z: Undo
Ctrl + Y : Redo

FIGURE 8.4 The
Undo and Redo
buttons.

With those essentials out of the way, let’s look at how to move around the

game environment in the editor.

VIEWING THE LEVEL IN UNREALED

The thing you probably noticed first is the area divided into four sections that dom-
inate the editor screen. These four windows are called viewports and show the level

in a variety of ways. The default windows that appear on loading are (clockwise
from the top left) the Top, Front, 3D, and Side views of the current level (Figure 8.5).

This is notall that exciting at the moment becauseit’s a blank level and all that
is showing in the viewports is the editing grid (more on that later in this chapter).
The gray windows with the grid showing are called the orthographic views. These
windows only view the level along one axis, and have no perspective, which means
that every object is viewed as ifit were the same distance from the camera. This

helps you edit the various level elements and make sure everything is the right size

and shape. The fourth viewport is the non-orthographic view. This is the opposite of
the other viewsin that it shows all three axes at the same time and has perspective
so that objects further from the camera look smaller—it’s a true 3D view. This

viewport is harder to edit in, because sizes and shapes are all relative to the camera

176 Game Level Design

FIGURE 8.5 The four main views in UnrealEd.

and it is impossible to tell accurate distances as in the orthographic views. However,the non-orthographic viewport shows the level exactly as the player will see it, inmotion if desired, with particle effects and animated textures playing in real time.This is one ofthe powers of UnrealEd, the direct feedback a level designer gets when
adding something to the level and being able to see exactly how the map will lookand feel without having to run it in the gamefirst.

You can easily change the type ofview shown in each viewport. An icon bar (Fig-
ure 8.6) at the top of the windowsallowsthe userto select various particular modes.

The T, F, and S buttons represent Top, Front, and Side modes. The cube icons totheir right all represent different types of 3D modes, mostly specialized views for op-timization. For now, the only view we need can be selected by clicking on the check-ered box with a shadow, called Dynamic Light mode, which shows the levelin full.

FIGURE 8.6 These buttons will change the mode of a viewport.

Using a Level Editor: Building a 3D Space in UnrealEd 177

MOVING AND WORKING IN THREE DIMENSIONS

Now that we've covered how to see the level, we need to look at how to move
around in it. When you are building your level, you will be working in a simulated

3D space, much as the player will be moving throughit. In general, we call each of
the three dimensions in space the X, Y, and Z axes. The Z axisis heightin the edi-

tor, and X and Y are breadth and width, respectively. As you move around the en-
vironment in the 3D view,it’s easy to become confused at some stage about which

way is the X,Y, or Z plane. Fortunately, UnrealEd, and most other serious editors,

gives you a real-time axis indicator on screen so you can always keep track of your
orientation and the orientation of the objects you are manipulating and placing.

Figure 8.7 shows the axis indicator in the 3D view.

FIGURE 8.7 The axis indicator in a 3D window.

CAMERA MOVEMENT CONTROLS IN THE EDITOR

Each viewport actually represents the view from a virtual camera, and moving the

point of view in these windows is often referred to as moving the camera. The

Camera Movement mode (Figure 8.8) allows you to move the view in each of the
display windows, as well as move and rotate objects and actors around in the level.

This is the mode you will use for most of your session in the editor and is the de-

fault mode for general editing and changing properties of ingredients.

178 Game Level Design

FIGURE 8.8 The
Camera Movement
mode button.

The camera can be moved using the following mouse movement and buttoncombinations:

3D View

Rotate left/right: move the mouse left and right while holding either mousebutton.
Rotate up/down: move the mouse forward and backward while holding the
right button.
Move in/out: move the mouse forward and backward, holding the left button.
Move left/right: move the mouse to either side holding both buttons.
Raise/lower height: move the mouse forward and backward holding bothbuttons.

Top, Front, or Side Views

Move left/right/up/down: move the mouse in the desired direction while hold-
ing the left button.
Zoom: move the mouse forward and backward while holding the left and rightbuttons. Alternatively, you can use a scroll wheel if your mouse has one.

Ae Try opening the map that comes with the Unreal Engine Demo, Em_Runtime.urt in2 lo
.

Q the Maps folder. Use the controls Just described to navigate around the environment inme the orthographic views, and in the 3D view, until you feel comfortable with the controls,

WORKING WITH LEVEL GEOMETRY

Before we get into the details of starting to build an environment from scratch, it’s agood idea to talk about the elements that go into creating the basics of the level
geometry. When we talk about geometry in the book, it really refers to the 3D sur-

Using a Level Editor: Building a 3D Space in UnrealEd 179

faces that make up the levels and everything in them. The word is used in the field

of mathematics to describe the relationship of points, lines, and angles. These points,

lines, and angles allow us to create a 3D level and the engine to giveitlife.

Different Geometry Types in UnrealEd

BSP

The engine supports three major types of geometry—three different ways to make

the surfaces that define your level:

m BSP
m Static mesh
@ Terrain

BSP is short for binary spatial partitioning. Roughly speaking, BSP is a way for the

game engine to work out what in the level is visible to players as they move through
it, and what it doesn’t need to bother rendering (areas behind walls or other solid

obstructions, around corners or behind the player’s range of vision, etc.) Rather

than try to go into technical details, we can talk about the basics ofits purpose in a

level. BSP generally makes up the bulk of the hull geometry or the geometry that
makes up the basic surfaces of the environment. In most interior maps, BSP is used

for surfaces like walls, floor, ceilings, stairs, and so forth. It’s sort of like virtual wood

or plaster. One benefit to using BSP for surfaces is thatit uses lightmaps to show the

effects of the lights in the level hitting its surface. We'll talk more about lightmaps in

Chapter 10, but for now, simply remember that BSP has nicer-looking light and

shadow effects than do other types of geometry in the editor.

Creating BSP islike using building blocks, with the added power that you can

generate whatever size and shape building blocks you require, at any time. In the

engine, these blocks are called primitives because they are all very basic shapes—rec-

tangles, cylinders, cones, and the like. You will create many separate BSP pieces that
fit together to define the shape of areas or objects. These pieces of BSP are called

brushes in UnrealEd. Generally, brushes are kept as basic shapes and grouped to-
getherto create more complex forms. For instance, you can make a sealed room
using six cubic brushes—fourfor each of the walls, one for the ceiling, and one for

the floor (Figure 8.9)
BSP can also be used to create simple decorative elements that don’t require too

much detail, such asstairs, railings, window frames, or crates (Figure 8.10).

Later, we'll look at how to create BSP brushes in the editor, as well as edit and

move them. The important thing to learn now is that BSP is used for low-detail and

structural geometry, orfor surfaces. For more detailed and fancy decorations, you'll

wantto use static mesh.

180 Game Level Design

FIGURE 8.9 A room made from six BSP brushes.

FIGURE 8.10 Decorative or semi-decorative objects in a level made with BSP brushes.

Using a Level Editor: Building a 3D Space in UnrealEd 181

Static Mesh

This form of geometry is different from BSP in that it is not generally created in the

editor. Static meshes are made in external 3D modeling applications such as Maya

or Max, and then imported into the editor as an object you can place, move, and

perform simple procedures, such as scaling or duplicating it. Static mesh does not
allow more complex operations such as those available to BSP or Terrain.

You may be wondering what the “static” part means. Well, the Unreal engine

has two kinds of imported mesh—the static, decorative type just explained, and

skeletal mesh, which is the kind of geometry used to make NPCs and objects that

move and have animations in the world. The “skeletal” part comes from the fact

that animators use a special kind of virtual skeleton to move the mesh around and

get it to look natural. These are special kinds of decorations that usually come with

Al programming and code that makes the mesh move and animate based on what

the actor is doing.
So a static mesh is an object with no animationsor special code—it is simply an

object that is meant to sit in your level and look pretty. Objects that require fine de-

tail or more surfaces, such astrees, chairs, cars, door handles, or lighting fixtures are

made by artists as static meshes and placed wherever they are needed, or simply

look cool. Figure 8.11 shows some examples of static meshes in a map.

FIGURE 8.11 Some examples ofstatic meshes by the Epic artists.

182 Game Level Design

Unlike BSP geometry, static meshes do not use lightmaps, instead they use asimplified system that shows what lights are hitting it and how hard, called vertexlighting. A simple rule of thumb with vertex lighting is that the more complicated amesh is—the more polygonsit has—the better the lighting looks. Generally, how-ever, static meshes shouldn’t be used for level elements like floors or wallsthat willbe illuminated by many lights. It won’t look as good as BSP. We'll examine this
more closely in Chapter 10.

Terrain

Terrain is a very specialized form of geometry used to make.. . well, terrain. It is aflat plane that you can raise and lower, flatten, and generally shape to make anykind of natural terrain you need—from flat fields to rolling hills to Alpine slopes,and everything in between. Terrain can be created in two ways, either in the editor,or by using an image program suchas Photoshop to form a heightmap.A heightmap is a convenient way to create a 3D form using a simple 2D image.Using your image editor, you can create an above-view ofthe terrain you wantusing pure black, pure white, and shades of gray in between. When UnrealEdreadsthe image and appliesit to a terrain mesh, there will be high areas wherever whiteshows on the image, the deepest or lowest parts when thereis black, and differentheights in between depending on how light or dark the gray is. This may soundconfusing but if you refer to Figure 8.12, you will see the way that the heightmap istransferred to the 3D terrain geometry. Now thatthe terrain is using this image asits guide to what it needs to look like, you can simply draw on the imageto edit theterrain geometry using the same color-to-height rule.
The other way to create or edit terrain in UnrealEdis to create a flat surface first(using a neutral gray heightmap) and then form it to the shape you want using theeditor’s special tools. This allows you to select different areas ofthe ground and ma-nipulate them in real time, seeing the effect in your editor. It’s a much more pow-erful method of creating a landscape or outdoor area. Terrain, like static meshes, isvertex lit. The number of polygons and their size compared with the player will de-termine how realistic and sharp the lighting is on the terrain’s surface. Terrain can-not be used for anything other than naturally forming, organic surfaces. It can onlygo up and down, you cannot create overhangs, or tunnels, and it certainly shouldn’tbe used to make anything like a building or a manufactured object like a crate or avehicle. However, it’s invaluable for creating large outdoor spaces, or simple butnatural-looking indoor spaces like courtyards or walled gardens.

Using a Level Editor: Building a 3D Space in Unrealed 183

FIGURE 8.12 A 2D heightmap and the resulting terrain geometry created byit in the editor.

BUILDING THE LEVEL HULL IN BSP

The detail needed to create a full level would take an entire book by itself. For our pur-

poses of examining the use of a level editor, the task will simply be to build a room,

add a light, wall coverings, and a static mesh decoration. Doing so will get us familiar

with the basic operations, menus, and procedures used to make levels for the Unreal

engine.
Okay, thefirst step is to make the actual room. This is done very simply. We

need to select a shape and give it dimensions to make a builder brush. We will use

this brush—or shape template—to “carve” the shape of our room in the level.

WhatIs a Brush?

We know now that a level is made up of many individual 3D shapes, called brushes.

Brushesare the foundation of the level in Unreal-based games, the primitive geom-

etry used to create the level hull.
One very important thing to know about using BSP in UnrealEd is that it is

based on the concept of making subtractive geometry. The easiest way to explain

184 Game Level Design

this is that most game editors are additive, which is to say the level starts as an
empty void, to which the level designer adds walls, floors, and ceilings to create in-
terior spaces. These pieces could be made by artists and snapped together by the
level designer. The level designers might also use simple BSP shapes to build the
level hull. ;

UnrealEd levels start as complete solids. Instead of building up rooms and
spaces, the designer actually subtracts them—or “carves” them out of the world.
Simply subtracting a cube from the world will create a room—the inside of the cube
is now a space carved out ofthe solid. By further subtracting these spaces using BSP
brushes, a level of many different interior connected spaces is created.

Subtraction allows the level designer to build a level with many fewer brushes.
Consider it—to create a room additively the level designer needs to use six BSP
brushes, as explained earlier. To create the same room subtractively, the player
simply needs one brush, shaped to the required dimensions of the room, and then
subtracts that from the level solid (Figure 8.13).

FIGURE 8.13 A room made from a single subtracted BSP cube. Compare this with theidentical room in Figure 8.11.

However, BSP can be added easily in UnrealEd too. To work additively, a level
designer can simply subtract a massive space for the levelto take place in, and then
add brushes in to create the level hull. Subtracting in UnrealEd instead of adding

Using a Level Editor: Building a 3D Space in UnrealEd 185

BSP does save memory and reduce the occurrence oferrors caused by “leaks” in the

level where brushes don’t completely touch each other and open the level to the

void outside. In editors for games such as Quake that use additive brushes for the

hull, leaks can cause many visual problems in the map.

WhatIs the Builder Brush?

Before a brush becomes part of the level, it exists as a kind of “ghost image” with di-

mensions based on the numbersthat you setin its properties. This shape is shown

as a red wireframe outline in the level, but does not exist until you add it or subtract

it from the level. Onceit is the correct shape and size, the level designer can move
it into position in the level and click the Add or Subtract button to make it a per-
manent brush. The phantom brush is called the Builder Brush, the nameit will be

referred to throughout this brief tutorial.

Creating a Builder Brush

Weneedto pick a primitive shape for the builder brush so we can make the room.
We can do this by going to the builder primitives group (Figure 8.14) and right-

clicking on the icon of the rectangle to open a dialog box, where we will set the

properties of the room we want (Figure 8.15).

FIGURE 8.14 The
brush primitives FIGURE 8.15 The cube brush properties window.

button group.

Game Level Design

Right now the only properties that we need to set are height, width, andbreadth. Type the number 1024 for all three (we'll go over what this number meanslater in talking about units of measurement), and click the Build button whenyou're done. A red wireframe box will appear in the corner of the 3D view. This isthe builder brush—the shape that will be added to or subtracted from the world de-
pending on what you wantto do with it. The dimensions are exactly as you typedin the previous menu. To turn this “ghost” cube into a real piece of BSP, we needto select the Subtract button (Figure 8.16) located below the primitives group.

FIGURE 8.16
The Subtract
button creates a
subtractive BSP
brush from the
builder.

This will result in a box appearing in your level. If the box isn’t centered in the3D view, move the camera until it is. If nothing seems to have happened, be sure thetop of the window says “Dynamic Light” and not “Wireframe.” If it doesn’t, clickthe little checkered cube button on the right of the mode icons to return the viewto the Dynamic Light mode. You should have something that closely resembles theroom in Figure 8.17. We will be working in this room for this chapter. You'll noticein the 2D views that the box has a yellow wireframe. This denotes that it’s a sub-tractive box—it’s subtracting space from the level’s solid mass. Brushes that addmass back into the level are colored blue. There are different colors for othertypesof brushes, but for now, we just need to recognize these two colors.
Now you have an empty room. The greenish texture on the walls, floor, andceiling is the default image (or texture) that the editor applies to surfaces when theuser has not specified a specific image to use. Thisis often referred to as the “bub-ble wrap” texture. Not much to look at, but this is where all levels begin—the firstelement in a blank level. Next, we’re going to add an actor to the map to test it.

Using a Level Editor: Building a 3D Space in UnrealEd

~~
187

FIGURE 8.17 The subtracted cube brush.

PLACING ACTORS

An actor in this engine is terminology for pretty much anything that has code behind
it. More simply, this means almost any object in the gameis considered by the en-

gine to be an actor because it has some kind of programming involved or properties
that can beset by the user. For example, a light in the level is an actor because it has

settings and properties that allow it to be modified. A BSP brush is an actor,of a sort,

as is a static mesh. At runtime, the player sees these visual elements in the map.
Other types of actors, those that provide functionality for the level but aren’t

seen by the player or explicitly in the world (a trigger may exist as an actor but play-

ers may not know they have triggered it) are invisible actors. They can be seen and

manipulated in the editor, but when the game runs they are unseen in the level,

working in the background without the player knowing anything about them other
than their visual or audible effects.

Most actors can be placed in a map extremely easily. All you need to do is open
the Actor Browserbyclicking on the buttonat the top ofthe editor window (the icon

of a chess pawn). This will open a new screen with a number of tabs on the top. This
is the Asset Browser, which accesses much of whatis created outside the editor and

placed by the level designer. For now, wejust need the tab labeled “Actor Classes.”

188 Game Level Design

The PlayerStart Actor

Every map needsa place for the player to start from. To add this to the map, and be
able to test it in the game, we need to place an actor called the PlayerStart. Using the
Actor Classes window thatis open, click on the small “+” symbol next to the word
Actor. This will expand the actor category list. Next expand NavigationPoint by
clicking the “+” nextto it, and do the same for SmallNavigationPoint. These names
may seem obscure, but don’t worry, it’s not important to understand what they
mean for now. You should now see a line that reads PlayerStart. Don’t expand this.
Simply click on the name itself and it should highlight, as in Figure 8.18.

[=Actor
CE Info

Er NavigationPoint= SmallNavigationPoint

{i "Ladder
E38 “FlayerStart
“*T eleporter

~ "BlockedPath

"Door
“ “LiftCenter
~ "LiftE sit

 PathNode
~ “AntiPortaldctori *Decaration
“Emitter

 *FluidSurfaceOscillator
- "Kactor
-*Keypoint

~ "K¥'ehicleFactary
“Light

“Note
“Pawn

"Pickup
- "Projector
-"StaticMeshdctor
*SWehicleF actory

“Triggers
~ WehiclePart

EEE

FIGURE 8.18 The PlayerStart
actor selected from the actor
class browser.

Using a Level Editor: Building a 3D Space in UnrealEd 189

Now that the PlayerStart actor is selected it’s easy to place it in our room. In the

3D view, move the cursor over the center of the subtracted cube’s “floor” and click
the right mouse button. A menu will appear with a number of options. One of these
is “Add PlayerStart Here,” shown in Figure 8.19.

PY [= EWS

FIGURE 8.19 Adding a PlayerStart sector via the right-

click menu.

Click this option to add the PlayerStart actor. The menu should disappear and

the screen will show the subtracted room as before, only now with what appears to

be a small joystick sprite on the floor (Figure 8.20). This is good—that joystick is

the PlayerStart visual representation in the editor. As an invisible actor, it won’t ap-

pear in the map, butit will tell the engine where to spawn the player when the map
is run in the game. Zoom in to the PlayerStart until the room fills the window, and

next we'll add some light.

190 Game Level Design

FIGURE 8.20 The PlayerStart actor successfully placed in the room.

Adding Lights

Before we “build” and test the map, we need to place some form of illumination inthe room to see by. Placing a light is much easier than placing the starting point. Todo so, hold down the “L” key and left-click with the mouse on the floor of the room
near the PlayerStart actor. You should see a little lightbulb sprite appear near where
you clicked. If it doesn’t immediately show up, repeat the procedure again and it
will (the editor can be finicky about this sort of thing). Once it’s placed, you should
have something that looks like the scene in Figure 8.21.

With the light in place, we can build the map. Building is the process of the ed-itor compiling all the information about the map into a digestible form for the en-gine to run.It also means thatall the elements and ingredients in place at the timeof building are calculated. For our little level, this means the PlayerStart will be-
come functional and the light will be applied to the room’s interior surfaces as a
lightmap. There are a number of options for building different aspects of the mapindividually. All the buttons in the Build icon group control the specific build
processes, but the Build All button (highlighted in Figure 8.22) will perform a com-plete operation, rebuilding the lighting, geometry, and Al pathsall at once.

AUsing a Level Editor: Building a 3D Space in UnrealEd

~~
191

FIGURE 8.21 A Light actor added to the scene.

FIGURE 8.22 The Build All button highlighted.

Press this button now. You will see some progress bars quickly fill up (a map
with only one room and one light is built extremely quickly, but full-detail com-
mercial levels can take considerably longer, especially on older editors) and then a

window will pop up that looks like Figure 8.23.
The Map Check dialog box shows anyerrors in the map that the editor detected

when building. The only message now should be about a “NULL reference mater-
ial,” whichis fine. The editoris just pointing out that you still have the default bub-
ble wrap texture on the walls, which we'll fix in a minute. Close this box and you
should see the effects of your build operation. Now, instead offlat green walls you
should see the effect of the light you placed in the room (Figure 8.24). The floor will

be brighter nearer the light while the corners further awayare dark,as are the walls.

192 Game Level Design

FIGURE 8.23 The Map Check dialog window.

FIGURE 8.24 The room after lighting has been applied.

TESTING THE LEVEL

Let’s take a minute to actually test the level in the game engine now. This is simple,
just a matterof clicking the Play Map button (Figure 8.25) at the top of the screen
next to the Build buttons. Clicking this thefirst time will create a log window that

Using a Level Editor: Building a 3D Space in UnrealEd 193

will generate a lot oftext and then the screen will go black momentarily before the

game shows up. Don’t worry if it takes a few seconds the first time you test the map,
the engine needs to create supportfiles the first time it is run.

FIGURE 8.25
The Play Map
button.

Once the level has loaded, you should find your creation there, a bare room
with one light. You can use the mouse to “look around” and the W, A, S, and D keys

to move around the level. When you're done, press the escape (Esc) key on the key-
board, and select the exit option to return to the editor.

LOADING TEXTURES

Now that you have seen the level closely you probably want to improve the looks of

your modest map. Lighting is a good beginning to make a better-looking environ-

ment, but another key factor is texturing—applying 2D images to the level surfaces

to give them depth and context. To apply texture, we need to load some appropri-
ate textures into the Asset Browser to choose from. Looking to the button group
where we selected the Actor Class browser earlier, we can find the Texture Browser

button (Figure 8.26).

FIGURE 8.26
" The Texture

Browser
button.

194 Game Level Design

Clicking on the button will open the Asset Browser window with the Textures
tab selected. There will be a few random images in the main window and the pack-
age name, “Editor” appears in a drop-down box above. These aren’t suitable for

~ «decorating the room, however. In the browser, go to the menu bar and click on File,
ome then select Open. You will need to navigate to the book CD-ROM and find the

folder labeled “Demo_Level.” In this folder, you will see the texture package file
named “Book_Demo_Textures.utx.”

The editor requires that assets be saved in “packages,” which are collections offiles that are
grouped together for convenience. You might create a package that contains all the wall
textures for your level. Or you might putall the texturesfor the level into one single (and
massive) package.

Click on this file and select Open to load the texture package into the editor. Now
you should see some different images in the Texture Browser, two textures that look
like doors. Above the images is a drop-down box that simply says “Doors.” Click on
this and scroll down until you see a line that says “Walls” and click on it (Figure 8.27).

Ul Tentures - TextureLaFile Edit View Tools Fitter “In Use" Filter
=lolx)

Textures | Actor Classes | Meshes | Animations | Static Meshes Prefabs | Groups | Sounds | Music |

4B EE]ny] «nl
Full Jin Use | Recent |

Book_Demo_Tentures =!

Filter

FIGURE 8.27 Selecting the Walls category of the demonstration package.

Using a Level Editor: Building a 3D Space in UnrealEd

~~
195

This will open another part ofthe texture package, where all the wall images are
kept.

All the textures have nameslisted below them as well as sizes, for example (512 x
512), in pixels. In UnrealEd, textures are by default mappedata ratio of one pixel to
one unit of measurement in the editor—simply called units. When we created the sub-
tract brush for the room, we made it 1024 units to a side. This means that a 1024 X

1024 texture will fit on a wall perfectly. For a smaller texture, such as the 512 xX 512

pixel wall textures open right now, the image would be mapped on a 1024 xX 1024 wall

four times. This may sound excessively complicated; however, being able to create a

working level hull depends on your ability to understand and stick to the game’s units
of measurement. Let’s leave the textures aside for a moment and examine the concept
of measurementin a level editor.

UNITS OF MEASUREMENT

First and foremost you will need to agree as a team about whatsort of universal units

you will measure the game in. Generally, there are two types of units—real and
abstract.

Real measurements in a game follow a system used commonly in the world. For
instance, you might build your game environments using meters, or feet, or inches.
This is convenient for artists because it allows them to make some general assump-
tions about the scale and size of objects before you even build the level. Assuming

your gameis using centimetersas its basic unit of measurement, you can simply go

measure a doorway, or look up average door heights on the Internet, to know how

high to build it in the game. The problem with real-world measurement schemes is
that often they create complex numbers, especially for level designers. If you're
building an area using feet, and then need to subdivide into inches (such as 3" 4")

when something needs to be between three and fourfeet, it can get complicated.
When you find yourself measuring thingsin fractions of inches, it can get down-

right ugly.
Another disadvantage is that most game textures are madeat specific sizes that

don’t really relate to real measurement. Most textures are measured in pixels, which
don’t have an exact fixed ratio to any real unit of measurement. Textures also re-
quire very specific increases in size. Textures use “power of two” sizes, meaning that
a legal texture can only have an edge of 2, 4, 8, 16, 32, 64, 128, and so forth. Fach
size larger is simply the previous size multiplied by two. Convenient for graphics

programmers and Photoshop artists, but it means the biggerthe texture the bigger
the jump in size, and that can cause headaches when you’re creating large spaces in

your level.

fa

ola

196 Game Level Design 3

3

5
3
3

§

This is why many teams use abstract measurement units to make things easier
for the developers. Because the textures have a specific measurement system, Epic j

decided to mirror the same unit system in its engine, as we'll find out later in the
book. The Unreal engine uses the same measurement scheme as the textures, al-
lowing designers to create walls that perfectly match their texture sizes. A wall 256
high will receive a 256 pixel high texture with no squashing or stretching of the
image. The advantage of an abstract unit is that it can be customized to the needs
of the game.If you need a lot of fine detail in a 3D shooter, you might have a very
“granular” system of measurement similar to centimeters or millimeters. If you're
making a map fora tile-based game, you might only need to measure by the squares
that determine where each piece goes.

x7 Abstract measurement is always a hard concept to explain. Generally, the chess anal-
ogy helps illustrate this concept. Chessboards come in many different sizes and shapes,

- and the actual size of each square in inches or centimeters is actually not important.
You can play chess on a board the size of a soccer field, or you can play it on a board
the size of a beer mat. What is important is that there are eight squares to a side. The
number of squares rather than their actual dimensions in relation to anything except
each otheris what needs to be calculated when making a chessboard. Thus, you can say
that chess uses “squares” as an abstract unit of measurement.

If you don’t have a unified measurement system for the game you are building
levels for, takeit as an early danger sign. On at least one commercial title (that shall
remain nameless), every level designer was working with a different measurement
system, and all the environments had to be rebuilt later in the project when it be-
came obvious that nothing was a standard size, not even the doorways.

APPLY THE TEXTURE TO THE LEVEL

Now that we've covered the concept of measurement, let’s go back to the Texture
Browser and select a texture for the walls of the room. What we need is a texture
that will tile well across the surface of the BSP brush. This excludes anything with a
specific detail on it that will obviously be repeated. A good candidate then, is the
texture named “runnergreen.” Select it by clicking on the image in the browser.
You will know it is selected when its background turns from black to gray. There
can only be one texture selected at a time, and when you choose to apply a texture
to a surface, or when you build a new brush from the builder, it will use whatever
is selected in the browser at the time for the surface texture.

With the texture selected, you can now applyit to the walls of the room. Hold
down the Alt button on your keyboard, and use the left mouse button to paint the

Using a Level Editor: Building a 3D Space in UnrealEd

~~
197

wall with the image. It’s as easy as that. Go ahead and do the same to the other three
walls in the room. You should end up with something that looks like Figure 8.28.

FIGURE 8.28 The room with a proper texture applied to the walls.

Now that the walls are textured, it becomes obvious that the lighting is ex-
tremely rough. The first step to fixing this is to place a few more lights and move
them to better positions in the room for a more natural, and pleasing, effect.

MOVING ACTORS IN THE LEVEL

Moving actors is similar to moving the camera view around in the environment.
First, you need to select the actor you want to move. If you select a piece of geometry
like a BSP brush in the wireframe view,it will become brighter than the others. Other
actors turn green when selected. You can select more than one actorin the 3D view
by holding the Ctrl key and clicking on as many as you want. Deselect any selected ac-
tors by pressing Shift + N. Once you have the actor(s) that you want to move selected,
there are different mouse button combinations for the 2D and 3D views.

198 Game Level Design

Moving Actors in the 3D View

Move actor on X axis: Move mouse left and right while holding the left button.
Move actor on Y axis: Move mouseleft and right while holding the right button.
Move actor on Z axis: Move mouse up and down while holding the left and
right buttons.

Moving Actors in the 2D View

Move actor on X and Y: Move mouse in any direction holding the left button.

Try adding another light, in addition to the one alreadyin the room, and mov-
ing both to opposite sides of the room, aboutathird of the way up the wall. As you
move the lights, you will see their effect on the surfaces of the level. If a lightbulb
icon disappears, it has gone through the wall of the room to the otherside. You can
switch to a top view if this happens and drag the light back inside the square of the
subtract brush. After you are finished, your room should resemble Figure 8.29.

FIGURE 8.29 The room illuminated by two wall lights.

ADDING A STATIC MESH ACTOR

This room is bare. Let’s put something in it to give it a sense of scale. In the asset
browser, click the tab labeled Static Meshes. Just as you did with the texture package,

Using a Level Editor: Building a 3D Space in Unrealed

~~
199

“«.,open the “Book_Demo_Staticmesh.usx” file from the CD-ROM in the Demo_Level
wmee folder. When the file loads into the browser,it will show a chair in the small 3D pre-

view window. Thisis the only mesh in this package, and it is pre-selected by the ed-
itor. Adding it is the same as adding the PlayerStart—right click on the floor of the
room in the 3D view and choose “Add Static Mesh: ‘Book_Demo_Staticmesh.Fur-
niture.chair’.” Where you clicked, an instance of the chair will appear. If not, click on
an area thatis fairly clear on all sides and add it again. The editor will not add a sta-
tic mesh actor somewhere it will not fit. You can rotate the chair on the floor byse-
lecting the Rotate Actor button (Figure 8.30) at the top left of the editor.

FIGURE 8.30
The Rotate
Actor button.

When you are happy with the chair’s position, go ahead and rebuild the map.
You should end up with something like Figure 8.31.

FIGURE 8.31 A newly placed static mesh chair.

200 Game Level Design

CHANGING THE BUILD PARAMETERS

One thing you may have noticed by now is that the lighting in the map looks good
until you rebuild it, and then it looks splotchy and generally bad. That is because
the engine is, by default, rendering the lighting at a low quality. You can easily
change the quality of the lighting by using the Build Options button (Figure 8.32)
in the Build group and changing a few settings in the menu. For now, open the For-
mat settings and select RGB. Then uncheck the box labeled “Dither?”(Figure 8.33)
and click the Build to rebuild the map with better lighting,

FIGURE 8.32
The Build

Options
button.

RT

FIGURE 8.33 The Build Options menu.

Using a Level Editor: Building a 3D Space in Unrealed

~~
201

ADJUSTING AND DUPLICATING BSP

To finish the room, we can make a better floor and ceiling by applying textures to
them and removing the last bubble-wrapped surfaces from the map. The only
problem remaining is that the ceiling is awfully high, lost in darkness. Also, the tex-
ture on the wall is tiling vertically, and looks a little unusual with a second base-
board running around the middle of the room. Let’s bring it down to a more
normal height by going into the Side view and using the Vertex Editing mode. You
can enter this mode by selecting the button to next to the Camera Movement but-
ton at the top left of the editor (Figure 8.34).

FIGURE 8.34
The Vertex
Editing mode
button.

In the Side view, we can see the yellow square outline of our room,the chair,
and the two lights inside. Thefirst step is to select the brush so it brightens, indi-
cating thatit is the active selection. Now we can drag a selection box around the top
edge of the square. This is done by holding the Ctrl and Alt keys, then clicking and
holding the left mouse button. Moving the cursor down and to the right should cre-
ate a box shape that encompasses the upper half of the yellow square (Figure 8.35).

Letting go of the keys and the button will make the selection box disappear, but
now there are two white dots at the upper corners of the brush. In fact, there are
four of these dots, but without perspective, it looks like only two.

These white dots tell us that the vertices—the four upper corners where the
lines of the brush meet, can now be moved. Using the same controls as moving an
actor in a 2D view, carefully move the dots down to half the original height of the
brush. Make sure that the sides of the brush remain perfectly straight on the back-
ground grid (we’ll talk more about the grid in a minute), and you will have a scene
that looks like Figure 8.36.

:

202 Game Level Design

FIGURE 8.35 A selection box encompassing the upper vertices of the room.

FIGURE 8.36 The room's height cut in half by lowering the upper vertices.

Using a Level Editor: Building a 3D Space in UnrealEd

~~
203

Rebuild the map and go into the 3D view and you should see a room similar to
Figure 8.37.

FIGURE 8.37 The reduced ceiling in the 3D view.

That’s it—you made a room from scratch. You lit it, textured it, adjusted the
height, and gaveit a PlayerStart so it could exist in the game. These humble begin-
nings are the start of learning a level editor. You may now appreciate the huge
amount of time and effort it takes to design and build a full level for a commercial
title. Using this editoris a start, but there are many games with many different edit-
ing tools available. The more you can expose yourself to new waysof thinking and
building, the more robust you will be as a designer. If you are ready to go on, the
next chapters of the book will cover the more advanced procedures and theories in-
volved in creating complete levels. If you want to keep using the editor, Go to Epic
Games’ own Unreal engine site (udn.epicgames.com) where a complete set of tuto-
rials, from basic to advanced,is available for free.

204 Game Level Design

A FINAL WORD ON GRIDS, SNAPPING, AND CLEAN GEOMETRY

Every computer application where you will be placing separate elements together
provides a grid, from low-cost 2D illustration programs to high-end 3D modeling
packages. A grid provides a basic way of making sure everything lines up and con-nects smoothly. Why a grid? Well, for the same reason that you use graph paperwhen you wantto plan a level—it allows you to make sure that all the edges and the
corners ofthings line up. Graph paper allows you to make sure lines and edges arethe same length—that the walls of a room are all the same size, for instance.It also
allows you to compare sizes easily—a square room that uses four-grid squaresishalf as big as a square room with an interior composed ofeight-grid squares. That's
exactly why we use a grid when creating a 3D object or environment; it keeps thingsneat and tidy and allows us to make quick comparisons and judgments of relativescale and scope. Usually,a grid can be scaled up and down to support smaller and
larger objects. It will also support “snapping” where a part of whatever object youhave selected will snap to a point on the grid. This allows you to move selected ob-
jects around in increments, butstill link them correctly to other objects. The edit-
ing tools you use will always have a grid of some sort, and taking advantage ofit will
make your life a lot easier when you are building the level hull.

Remember that you can change the “size”of the grid—meaning how many units each
grid square represents—by selecting a number from the Grid Size selection box at the
bottom center of the editor screen.

In Chapter 6, we covered the concept of polygons and how a polygon was the
shape described bya series of points. Each of these pointsis called a vertex (or ver-tices for more than one), and each is a unique point in your virtual space with its
own X,Y, and Z coordinates. A quick demonstration of this would be to take a penand begin dotting your face with pen-marks. Apart from looking like you have bad
skin, you will have a bunch of points that represent the boundaries of your face in
3D space. If you took one point, say the tip of your nose, and measured from that
pointto each dot on your face, you would get a different distance for each. Thisishow the engine calculates shapes. The point on your nose is called the origin andoften represents the very center point in the world. By comparing the X, Y, and Z
values of a vertex with the origin, the game knows where each vertex is. By adjust-
ing the numbers, the engine can move the vertices around in space, and this is how
everything moves and reacts in the game.

This is the also the concept of how 3D objects are made—the vertices areallpoints on the surface of a model that when connected describe a shape in the world.
The line drawn between two verticesis called an edge, and when two polygons areput together, their outside edges will describe a four-sided shape.

FTE
S——

Using a Level Editor: Building a 3D Space in UnrealEd 205

You can use all of these elements on the grid to make sure everything is flush

with its neighbor. UnrealEd works best when all the vertices for BSP brushes are on

points of the grid. For instance, if you are creating the walls in the corner of a room
you'll want to make sure the edges where the walls meet each other leave no gap—
the player might be able to see through it, or the engine may consider the gap an

error and cause all manner of problems. For static mesh and terrain, it is less im-

portant, but for “clean” building purposes and tidiness, it still makes sense to keep

things aligned with the grid as muchas possible.
Another important aspect of building on a grid is that art assets or level assets

that you import from other people should also be built with the grid in mind. Most

modern modeling applications support a “pivot point”—a point around which the

model rotates. This pivot point can be used as the part of the model that snaps to a

level grid. In this way a modeler knows that if an object needs to sit on the

ground—such as a chair—placing the pivot point at the bottom of one ofthe legs

will allow a level designer to quickly line it up correctly at floor-level using the grid.
Some game editors keepall the various parts of the map separate (what we dis-

cussed as BSP brushes) but snapped together to look like seamless surfaces and cor-

ners. Other programs, especially high-end modeling packages such as Maya, allow

you to actually weld vertices together to join them permanently. In this way, you
can place the floor, walls, and ceiling of a room into a level as separate squares in

their basic positions relative to each other, and then weld the three vertices at each

cornerso that the six squares are now joined to make a sealed cube.

Generally, however, when you're making your level you won’t be welding verts,

you'll be snapping them together to makeit look like everything is really joined up.
The player doesn’t know the difference, if your artists have provided you with

clean-snapping level elements and you have placed them correctly.
If you learn to just place objects and build the maps by “feel” it will be harder

to break the habit and learn to build everything correctly on a grid. The ability to
build “clean geometry”is one of the basic abilities all level designers should have,
and this is often the difference between an amateur map and a professionally built

game level.

SUMMARY

This chapter gave a brief overview of how to create a simple environment in the Un-

real engine’s level editor UnrealEd. The basic elements of a 3D space were cre-
ated—the space itself first was made out of BSP, then a starting point was added for

testing, two lights for ambience, textures for context, and a prop for scale. These el-

ements provide a foundation for the next chapters, which will explain the process
of designing, documenting, and building a professional level from startto finish.

i

= Building the Level Part 1:
Basic Building Techniques

207

208 Game Level Design

In This Chapter
Restrain Yourself
The Difference Between 2D and 3D Levels
The Whitebox Process
Whiteboxing the Level Hull
Popular Level Building Approaches
Customizing Your Building Process
Optimization Techniques
Test Your Work Constantly
Summary
An Interview with Lee Perry of Epic Games

EE

EER

EEEERS

eeing your two-dimensional paper design take shape into a fully realized en-Grommen is one of the most fun parts of being a level designer.

There are as many techniques and tricks to building game spaces as there arelevel designers. This chapter will outline some of the most useful techniques for youto use when the time comes to go from design to implementation. As you go on tobuild each level, remember that you are engaging in a creative endeavor—there’s
no right way to create a fun experience, there are always choices to be made and op-tions to be weighed. Some will be right the first time and some you'll need to goback and fix. Your vision will come from your experience, instinct, and your talentfor making great spaces. Learn from your mistakes. It’s a different process everytime, and making a mistake when building a part of your map just means you have
a chance to make it twice as good.

In this chapter, we will cover a lot of ground. We will go over the different waysto build the level, and the sort of information and tools you will need to constructthe basic level structure. Specifically, we will also cover the part of initial level build-
ing we often call blocking, roughing, or more commonly, whiteboxing. It’s the
process of creating the level to see how it feels to play, without worrying too muchabout how it will look. Whiteboxing is a term borrowed from stage design and ar-chitecture, where a designer builds a mock-up of a project using plain white mate-rials. For level design, it simply means making the basic space, without all the bellsand whistles of fancy textures, lighting, or final decorative models.

The chapter will also cover two common ways to approach the construction of
your level, creating functional geometryfirst and adding the “icing” to it later.

Co)Building the Level Part 1: Basic Building Techniques

~~
209

RESTRAIN YOURSELF

At this stage in production, level designers are champing at the bit to jump into an
editor or modeling program and begin building the level. You may see clearly how

the level will start, you might even think you have a perfect idea of how the entire
level is going to be. The planning is done, the documentation finalized, and the vi-

sion of the level is burning an image in their brains. But it is important not to
tackle everything at once—simply building a bunch of rooms, throwing textures on
the walls and floors, and placing lights all at onceis rarely the recipe for a success-
ful level, especiallyif you end up realizing you need to make a room bigger to fit a

puzzle, or that your corridors are too narrow for the enemy soldiersto fit through.
You need to first build a functional space, and then you can add the gameplay and

decorative elements, test and tune your creation, and finally polish it for delivery.
In level design, form follows functionality for the most part—remember that even

a great-looking level will soon grate on the player if it’s not fun to play.
At thestart of this book, level was defined as “a container for gameplay.” Now

is the time to build the container—you can worry about decorating it later.

THE DIFFERENCE BETWEEN 2D AND 3D LEVELS

At this point we reach a critical junction. Until now,it hasn’t really mattered if your
game is a 2D side-scrolling action shooter, a 3D role-playing game, or even a text
adventure. Design and planning is a universal requirement, no matter what genre
or platform you are making your levelfor.

Implementation, on the other hand, is going to differ based on several fac-

tors—the type of game, the number of people on the team, the pipeline, and more.
A fundamental difference in approach results from whether you are building a 2D

or 3D level. Generally, the biggest difference is in realism. 3D levels are built with

an element of realism in mind—even those that set out to be stylized. This means
that close attention needs to be paid to texturing, lighting, and making sure every-
thing works in three dimensions. Even a game like Legend of Zelda: The Wind

Waker that goes to great lengths to keep a “Saturday morning cartoon” look uses

very complex lighting techniques and the element of 3D space to create vertical

drops, high mountain peaks, and vast ocean panoramas.
A 2D game, however, is limited by depth—the most noticeable limitation for

this is the game camera through which the player sees the world. In a 3D game, you
can generally move the camera on three axes—sideways, up and down, and into

and out of the screen. A 2D game allows the player to only see one side of the game
world at a time—from the side, from the top, or from the back of the main charac-

ter. Think of any 2D game, such as Super Mario World or R-Type. In these cases, the

210 Game Level Design

camera is set at a fixed axis and distance from the player’s avatar and the environ-
ment. Some games even try to mimic a 3D camera, such as Warcraft 2. However,
these sorts of games use an isometric viewpoint to simulate the look of three-
dimensionality. The characters arestill just flat sprites on screen thatare limited to
being viewed from only a few set angles—it’s still not a real 3D game. Some 2D
games havetried to include limited movement into and out of the screen. Odd-
world: Abe’s Oddysee, for example, allowed the player to use occasional doorwaystomove between the foreground and the background. Though it was a nice visual
effect, it wasn’t vastly different. Beyond these gimmicks, 2D games are mostly rele-
gated to flat levels that the player only sees part of at once time, with the camera
scrolling around in the direction of movement.

Instead of creating surfaces, applying textures, and then placing simulated
lights to create dramatic lighting, 2D levels are often large background paintings
drawnasflat graphic pieces that are snapped together edge-to-edge to create a lin-
ear environment. Items that the player interacts with, such as platforms, enemies,
or switches, are placed on top of this background to create the parts ofthe level the
player can use to progress. Light effects and textures are painted directly onto the
level background. In this respect, the next few chapters about building your level
are more focused on making 3D maps, especially the information dealing with the
visuals of lighting, texturing, and placing decorative meshes. Although 2D games
are still being made, they are becoming much less common for commercial release.
Even game genres traditionally founded on 2D levels, such as RTS or adventure
games, are now using 3D environments.

THE WHITEBOX PROCESS

In level design, the functional construction is the level “hull”or the basic geometryneeded to create a space for the gameplay to happen in. The simple definition of a
whitebox level is one where the only visuals are those needed to test the gameplay—
basic rooms and spaces, a few lights thrown in, and one or two textures (Figure 9.1).

The reason for thorough whiteboxing is that levels are primarily about the
user’s gameplay experience. By waiting on the decorative or visual parts, the level
designer builds the functional parts of the map—keeping the level down to the
basic components needed to be able to play it and evaluate whether it’s fun, or if
there are any glaring problems with the design that won’t be noticeable until youstart to build it. Even more importantly, having a whitebox level allows you to test
it, or get othersto test it, and work out design problems, modifications, or simply
areas that need to be cut, before you spend any time decorating, or requesting art
assets from the art team.

ersBuilding the Level Part 1: Basic Building Techniques 211

FIGURE 9.1 A whiteboxed area of a level.

SIDEBAR

In a game I was designing levels for, I created several puzzles that required the

player to jump across platforms that would fall a few secondsafter the player
landed on them. The puzzles looked good on paper, but when production
started, we noticed it was very hard to predict where the player was going to
Jand—a mixture of the game camera’s restrictions and little “air control” (air

control is the control a player has over his character while in the air after

jumping—can you jump forward and then end up moving behind where you
started by holding the reverse button? That's air control!) meant that the plat-
forms would need to be a great deal bigger so the player could land on them
successfully. Luckily, the level was just whiteboxed—the platforms were sim-

ply mock-up geometry atthis stage and the room was bare exceptfor the pit
the player needed to jump across. The artists modeled larger platforms and
the pit was made wider to keep the difficulty level consistent. If I had already
had the artists build actual finished models for the platforms, and I had dec-

orated andlit the room already, I would have had a lot more work to imple-

mentthe changes when we discovered them. The artists would have had to go

back and create new models, as well as reapply the textures, and I would have

had to expand the room to encompass the new pit, then repair the textures,

lighting, and prop placement around the new room.

212 Game Level Design

The process in which you build your map will show the hierarchy of elements
in the average level. In order of importance, to build a finished level you will need
to add the following:

1. The Level Hull, or the basic geometry of your map that allows the player to
navigate from end to end. Thisis basically walls, floors, and ceilings, out-
door terrain, doorways, stairs and elevators, walkways, and the like. Thisismost of what we'll be reviewing. Whiteboxing also includes basic opti-
mization. We'll go overthis aspect of level design later in the chapter, but
optimization is one of those tasks that never seem to go away—you should
constantly look for better ways to improve the performanceof your level,
through all phases of building.

2. Gameplay elements that will create all the interactive encounters in the
level, such as enemies and the navigation networks they will use, switches,
puzzles, items and upgrades, traps, and important secret or hidden areas. If
the player needs pillars to shoot from behind, add them, otherwise those
elements are considered props and can go in at stage 3. This phase also
includes the scripting you need to do to givelife to the NPCs and environ-
ment, and to set up interactive sequences and encounters.

3. Decorative elements that will set the mood and atmosphere of the map, aswell as complement and enhance the gameplay. This covers textures; lightsand special effects; props such as columns, railings, door frames, and trees;interactive decorations such as breakable glass or exploding barrels; pedes-
trians; mood pieces; and sound effects and music. You can add scripted
events here that aren’t necessary for the level to work—bonus encounters,overheard conversations that give the player clues about the unfolding sto-
ryline, little scenes to enhance the mood or scare the player, and so on.

4. Polish items such as nonessential secret areas, additional props or audio el-
ements, and the like all go in last. Generally, this stage is strictly governed
by how much time and memory you have left to work with after you've fin-
ished the previous phases completely. Don’t be fooled into thinking this
phase is unimportant, however. Many of the best-received games were
popular because of the high degree of polish their levels showed. Schedule
polish time in whenever you can.

WHITEBOXING THE LEVEL HULL

The level hull is your responsibility and determines the important factors in the
level, such as flow, rhythm, difficulty, and ergonomics. Even more important, it de-
termines the quality of the player’s experience. Thisis essential to remember. Before

Scale

Building the Level Part 1: Basic Building Techniques 213

youstart to think about how a level is going to look, you need to make sure your
building is up to code. Just like a house that’s built with bad materials, if you don’t

take care to make sure you build good geometry, the player might find the game
collapsing around him. To build an enjoyable level you must address the following:

® The scale of the level elements
® The volume of the spaces
® The quality of the construction

When creating game environments, scale is a loose concept at best. The scale of

your level will need to change depending on several factors. In a third-person game,
the distance between the camera and the player avatar will make things in the world

look smaller. Games are generally played on a 2D screen, and humans are used to

having natural 3D vision. This means that the sense of scale in a game often comes
from comparing things with each other, or comparing the avatar with a piece of the

world, to work out general sizing and distance.

Scale Problems in Third-Person Titles

First-person games area little bit easier to design levels for because the camera sim-

ulates seeing the world from the eyes of the avatar, meaning that when something
is higher than the avatar you can’t see on top of it, when it’s lower than the height

of our eyes, we can. For a third-person camera, we can’t use these visual tools. Even

though we, the player, can see on top of a box, because the camera we are seeing the

game from is floating above the main character’s head it mightstill be higher than
the avatar’s eyes if we were to see from that point of view. The higher and further
back a camera is from the avatar, the more confusing it becomes. This also means

we can see over obstacles or around corners that the player’s character cannot,
which can give the player an advantage in the game whether you want it or not,

shown in Figure 9.2.
To deal with problems like this, a level designer needs to be able to scale the

level to suit the game’s needs, by instinct rather than mathematically. It is very im-

portant notto fall into the trap of trying to scale everything realistically. This will

almost never work because a game character has elements that will affect movement

through a virtual space more than a real person has moving through an actual

building. For instance, most engines use simplified methods to determine if a game
actoris colliding with parts of the world. Even though the player avatar may visu-

ally look like she can move through a doorway, the actual invisible structures—the
collision mesh—that calculates this may prevent it, causing no end of player frus-

tration as the character refuses to enter what appears to be a legitimate opening.

214 Game Level Design

View with First Person Camera

ET eH TE ee

FIGURE 9.2 An obstacle as seen from first- and third-person views.

Likewise, when creating a top-down 3D game, creating things in the world toscale may simply take up too much ofthe screen.If you're controlling a tank, and
you scale everything in your level realistically from the tank’s real-life measure-
ments,it may end up that a single house takes up half of the camera’s view. In this
case, you may need to make everything in the worldalittle smaller to allow the
player to maneuver around the spaces. Figure 9.3 shows an example ofscaling com-
mon in an RTS , where many of the buildings are scaled smaller than the vehicles the
player is controlling, which in turn are scaled differently than the human charac-
ters. However, having an accurate scaling is much less important to the gameplay
thanfitting as much as possible onto the screen without having a camera so far back
it’s impossible to click on a single tank.

Building the Level Part 1: Basic Building Techniques 215

FIGURE 9.3 Scaling example common for a Real-Time Strategy game.

Scale is secondary to ergonomics. Remember that you are the world’s most

knowledgeable expert on your own levels. It’s especially important to remember

this in areas such as scale where you may be tempted to think a level is playable sim-

ply because you can complete it. When you're testing your level, you probably
aren’t trying to see how easy itis to get stuck on pieces of geometry. Try playing

with your other hand, or have a co-worker who isn’t a level designer play your map.
Often you'll notice that others get stuck in areas or have trouble getting through
doors or corridors that you don’t because they aren’t aware of the best way through.

If you suspect that this is the case, you probably need to scale these spaces up, to

make sure your players don’t get stuck either.

SIDEBAR

Frankis building the ever-present sewer level for a FPS. He does his research

and finds outthat the sewer system in the area of the world in which the level

is set uses conduits barely big enough to fit a small adult. He faithfully re-

createsthis system of narrow tunnels in his map, being as close as possible to

the real-life dimensions of the sewers. He runs through a few times from end

to end, and the player avatarjust fits, creating the kind of cramped, claustro-
phobic atmosphere he wanted. Pleased, he sendsit to the QA department for

initial testing. An hour later, he gets a phone call from one of the testers:

“Frank, what the heck were you thinking? These sewers look great, but

they're so narrow I can’t turn around when I have a gun in my hand! The col-

lision on the main character expands to encompass the gun so thatit won’t go

through walls. Every time I get into a fight I get backed into a corner and
die—did you even playthis thing? No player is going to get past this level un-
less you widenall of the passages.”

216 Game Level Design

The rule of thumb hereis that players are more willing to forgive slight exag-gerations in scale—whetherit be increased or decreased—if it allows them to playthe game more easily. You can be sure thata map thatis perfectly to scale with theavatar isn’t going to win over a reviewerif he can’t get through a door without re-sorting to a cheat code,

Volume

Related to scale is volume. In this case, volume refers to the amountof space you ac-tually create rather than how much you really need for the finalarea, or, more im-portant, how much you will be able to fill until a room stops looking empty or flatand starts looking real. For instance, when fleshing out your design as basic geom-etry, you may realize that a space simply looks too big. It may also be tempting tojust bring in the walls and lower the roof to make it seem like a more realistic spacefor what the function of the space will be. However, if you don’t consider fully howmany decorative models will be added later, how many characters will need tomove in the space, how big the textures will be for the walls and floor, and so on,you may be making a mistake that you will need to address later, when you don’treally have the time. The concept of measuring volumeis a tough one to illustrateclearly. Even in reallife, volumeis incredibly difficult to estimate bysight alone. Ifsomeone showed you a cardboard box, you could probably guess how much itwould hold by example—it might be refrigerator-sized. But actually determiningthe exact volumein units of measurement is much harder. Unfortunately, many ofthe people creating assets for your level are working on exact measurements andmay be justifiably irate when you play with the numbers of your level without let-ting them know first.

SIDEBAR

In another fictional example, Benis creating a medieval town map for a brandnew first-person murder-mystery shooter. During whiteboxing, heis irritatedby how empty and huge the interior of the town’s church feels when heplaytests his work. Bringing the walls in makesit feel a little better, and hecontinues building the surrounding town structures based on the new mea-surement of the church.
A week later he gets an annoyed call from Linda, the modeler tasked withdecorating the map Ben has handed off to her. She reminds him thathis orig-inal documentation called for a much larger church interior, and that the

props she has made don’tfit properly any longer. As a result all the ambientcharacters are getting stuck in theaisle and between rows of benches, and ei-ther Ben or Linda is facing a few long days of rework.

EES
——Building the Level Part 1: Basic Building Techniques 217

Sometimes, however, you will feel thatthe areas you are working on don’t seem

big enough, or impressive enough, and you are tempted to enlarge them to make a

more imposing atmosphere. Thisis also jumping the gun, and not allowing your-
self or the artists’ time to achieve atmosphere through aesthetic means. A small

space can be made impressive or grand by lighting and texturing, or special effects

like fogging and reflectivity. Size, as they say,is not everything.
This is notto say that you shouldn’t use your instincts while building a level's

basic spaces, but you should always keep in your mind a mental image of everything

that needs to go into the map. When you feel the urge to mess with the dimensions

of a room or a hillside, make sure you know why you wantto change it. Changes in

the functional phase of level design can cause repercussions all the way down the

lineif you aren’t careful to communicate your decisions.

Quality

It may strike you as premature to talk about the quality of construction when

you're dealing with the skeleton of a level. On the other hand, not only are you set-

ting a precedent when you build the functional geometry, you're building a foun-

dation on which everything will be built. The best materials money can buy won’t

save a house built on a rotten foundation. It makes sense then to build the hull of

your level as stable and sound as possible when you begin.
The process that you use to make your basic level architecture will depend a lot

on the tools you will be using. If you use a BSP-based editor, you'll use brushes or

geometric primitives to carve the hull of the map. If you use a modeling package,

you might be using more complex means, moving faces and vertices in a more or-

ganic manner.
Either way, there are ways of keeping your work tidy. Allowing small overlaps of

shapes, floating vertices, or duplicating objects on top of each other can create visual

artifacts and in many cases affect the performance of the level or stability of the

map, crashing the game when the player enters an improperly built area. Every en-

gine is different but some common examples of bad geometry include the following:

m Z-fighting
®m Floating geometry
m Structural holes
m Complex shapes

I-fighting
The “Z” in Z-fighting, also known as Z-buffer fighting, refers to the depth or dis-

tance between a surface in the level and the game camera—the distance on the Z

axis. When two or more surfaces overlap, 3D engines often don’t know which one
is meant to be “on top,” and soit tries to draw both simultaneously. This results in

218 Game Level Design

an annoying flickering or saw-tooth effect as the different surfaces compete to beseen, as in Figure 9.4.

FIGURE 9.4 An example of Z-fighting.

Occasionally you might have surfaces that are very near each other, but notsharing the same space. In some game engines, this can result in flickering whenseen from a certain angle or distance. These sorts of problems often show up laterin the testing phase when a lot of people are playing through the map; however, itpays to take some time and walk through your map after long periods of construc-tion to see if you can spot special-case glitches.
Luckily, these problems can often be caught by error-checking map tools. Mostediting technology will warn you when two objects are overlapping, or occupyingthe same space, either automatically or when initiated by the designer. Unlike moregeneral problems, checking the locations and size of objects in the environment forerrors is easy for a computerto do.

Building the Level Part 1: Basic Building Techniques

~~
219

Floating Geometry

Being able to work in virtual space has amazing benefits. One of these is that most
level designers don’t need to worry about the influence of gravity until the game is

actually running (unless they wish to specifically see the effects in the editor). Often,
elements in a map that would be attached to things in real life, are placed as float-

ing objects in a game. For instance, a fire extinguisher in a level is placed flush

against the wall in a level to give the appearance that it is bolted there, when in fact
it’s just hanging there—with the player never being the wiser. However, this leads

to a very common problem in 3D maps—elements in the environment that seem
to hover unnaturally just above the floor, walls that don’t quite reach the ceilings,
or windows that float a foot away from the walls they are meant to be set in, such

as in Figure 9.5.

FIGURE 9.5 A window detached from the wall.

Detached architecture like this is usually is a simple mistake. Frequently, the

viewpoint you have in your editing tools can affect how often you misplace some-
thing. A top-down view can’t show object’s heights above each other. And although

220 Game Level Design

the window in Figure 9.5 is obviously floating from a side view, everything seems
normal from straight ahead (Figure 9.6). Not only does this look bad, and remind
the player that he’s looking at an artificial environment, it can also cause problems
where the avatar or game characters might get stuck in small, unseen gaps between
props, and so on.

FIGURE 9.6 The same window, from the front.

Floating geometry is a tricky problem for designers. Often people besides you
who notice it may not mention it, assuming you know, and have plans for the ob-
jects in questions. Other people may play through without noticing it themselves,
which can happen if the gap is in an awkward placeto see. This is why in many lev-
els, you can crouch or lower the camera to discover all manner of furniture or
props levitating above the floor.

It’s also tricky to build tools to detect these problems when they happen or at
compile time. In general, most objects need to be touching at least one other object
in the level. Very few thingsexist that can defy gravity—and most ofthose are flying

Building the Level Part 1: Basic Building Techniques

~~
221

vehicles or creatures that aren’t part of a level decoration. That being said, a light
switch needs to connect to a wall, not the floor. A chandelier needs to be attached
overhead to a ceiling or a beam, not a wall. Detecting what object needs to be fixed

to what plane or neighboring propis probably too hard to calculate automatically.
If your engine warns you about disconnected elements, that’s a big help, but human
vigilanceis always your best ally when making sure your geometry is tight.

Structural Holes

A generic sort of problem with many engines is the appearance of holes or cor-
rupted surfaces in the level when geometry is created incorrectly. These unstable

areas can have two common manifestations for the player—those problems that
simply affectit visually and those problems that affect the stability of the map.

Visual Problems

Commonly called a Hall of Mirrors (or HOM), a hole can appear on a face or over
several surfaces, through which the player can see either what’s behind it, or a

blurry strobing messif nothing exists on the other side. On larger surfaces, it is ob-
vious that there’s something wrong, butit’s easier to overlook small holes when the
surface that has a hole is in deep shadow.

In some engines, the editing tools may not show a hole in the geometry; you
must be in the game with everything running in real time to spot them. Commonly,
you'll get testers notifying you about “corrupted graphics” when holes occur.

Stability Problems

Sometimes a hole can occuras a more serious problem than a funky-looking wall.

Depending on the technology used, and the severity of the corruption, holes can
cause collision problems, freeze actors that try to move through the area, or in ex-

treme cases, crash the game. These are results of the game engine trying to deal with
the bad geometry and failing.

These surfaces can be visual, which makes them easier to track down, or they
can look perfectly normal on the surface, which means you (or the testers) will no-
tice them only when the problem occurs. Tracking down an area of corrupted
geometry that is crashing the game can be difficult, requiring that you run through
it several times until you get consistent results of where the problem begins, at
which point you can take steps to correct it.

Fixing holes in a map is usually a matter of tracking down the bad geometry
that’s causing them. For some editors, this is easy. In BSP-based maps, the designer
can see the cuts made by the various primitives used to create the level and follow
the cutlines (the lines where the BSP is automatically cut by the engine for opti-
mization purposes) from the hole to where the conflict or corruption occurs. In

222 Game Level Design

other applications, such as Maya, the designer may need to zoom in closely to the
problem area and see if he can identify the cause—it may simply be a vertex that
isn’t welded to the rest ofthe geometry, or it might be a face that is inverted. If in
doubt, simply rebuilding that section of the map is always an alternative to the de-
tective work of solving the engine’s issue with what you have constructed.

Complex Shapes

Overly complex geometry tends to be a problem like those mentioned above, ratherthan be a problem itself. However, it is a factor in the quality of a level construction
too, even ifit isn’t halting gameplay. Complex shapes with curves or faceted sur-faces can often slow down or cause problems in game engines that rely on simple
shapes to perform well. It is also a healthy habit to step back sometimes and see if
you are making things complex when the player won’t know the difference in the
final level. In Figure 9.7, you can see a simple door as basic geometry, and the samedoor textured. The texture actually handles most of the detail—the geometry justneeds to be a rectangular hole in the wall allowing the player through.

FIGURE 9.7 A simple door as flat geometry versus textured.

It can be similarly tempting to assume your level isn’t detailed enough when
you're looking at it as geometry without any texturing or lighting. When does a
shape go from being fine to being too complex? That’s something determined byfactors such as the polygon limitations of your game, the complexity of the geom-etry around it, and the expense of other map elements you will be adding later.

Building the Level Part 1: Basic Building Techniques

~~
223

Make sure you use good judgment when creating your geometry, but don’t short-
change yourself on areas that need polygons, such as curved surfaces, bevels or
pipes, that might require more complexity of form to look as realistic as possible.

POPULAR LEVEL BUILDING APPROACHES

We’ve gone over the concept of whiteboxing and paying attention to the function-
ality of your map before you begin actually decorating it. Now we can talk about
ways to approach putting together the basic map structure.

No matter what environment you will be building your level in, it’s likely that
you will have access to all the tools you need to put together a finished map. Mod-

ern level editors and 3D art applications contain all the methods of building, edit-

ing, decorating, testing, and releasing your work asafinished level. The problem is

that it is tempting to start using all of them at once. In this section, well look at two
common, but very different methods of building a level from start to finish. We can
call these the section and layer techniques. A levelis really made up of several dis-
tinct ingredients—the basic geometry, the decorative geometry, the lights, the tex-
tures, the navigation paths, and so on. “Sectional building” is where you will create

you level in a series of completed chunks, addingalittle of each building phase to
the mix at a time. “Layer building” is where you will add most of one phase, then
the next, and so on, building your level in passes, from start to finish each time.

Building Your Level in Sections

If your level is quite large, or you really don’t have the attention span to build the
basic structure of your map without stopping every now and again to decorate key
areas, then sectional building is probably your preferred method for level building.
For smaller levels, it may not be as productive to build in this manner.

Look at your design and see if you can break it up into separate areas that can
be tackled one at a time. Start by building thefirst few sections as basic whiteboxes.
Create the functional geometry, add in the gameplay elements that you need; if
there are puzzles, place them in the level, orif there are patrolling enemies, set up
their routes and place the enemy characters where they need to go. You're making
sure that all of the gameplayis in place enough that you can make sure the first sec-

tion playsas it should. Now you can begin to place textures and lightsin this sec-

tion, building the decorative elements to a more finished product. At this stage, you
may only have a small portion of the art assets you need for the finished level, but
you can always go back and replace some elements with their finished forms, or
leave room for objects to come later. If some sound assets are ready to go in, you
can think about placing those as well. Whatever hits you about the first few sections

224 Game Level Design

you've built—changes that need to be made, places that seem perfectfor secret pas-
sages or chambers, new encounters you hadn’t thought of before—add them in.
You're basically trying to get this section of the level as finished as possible before
moving on.

Once you're happy with the section, move on to the next area and repeat the
same process: get the structure built, the gameplayset up, textures and lighting ap-plied, and then move on. Figure 9.8 shows the workflow for sectional building.

Map Section 1 Map Section 2 Map Section 3

Basic Geometry > Basic Geometry Basic Geometry

Gameplay
STEEN TES

Gameplay Gameplay
Elements

Decoration

Elements

DecorationDecoration

FIGURE 9.8 Building your level in sections.

Advantages

Building by section gives you the ability to have a relatively finished map at any
stage of production, even if it’s only half of the actual level. If you're only 50% done
and your lead comes and tells you the game needs to ship early and you only have
five days left, you can probably stop where you are and use the remaining time to
create a new ending and polish up the map.It also allows you to build on and fine-
tune the visuals as you work. If you realize the neo-Mayan theme you've chosen
needs all the rooms to be bigger, you can adjust the current section and build the
rest of the level hull accordingly. It will also allow you to quickly build a full proto-
type of your map for the team to see, with examples of gameplay, architecture,
lighting, decoration, and general atmosphere early in the process.

Sectional building is also ideal for creative types who need to jump around
from areato area to keep their concentration.

Building the Level Part 1: Basic Building Techniques

~~
225

Disadvantages

Sectional building can be problematic because it means you are skipping the
pipeline too much. By starting to place decorative models and textures early in the
map’s production, you may only have a fraction of what the art team has been able
to create. This means you will often be going back to previous sections and adding
any new art assets that have become available since you last visited. This process is

chaotic and can lead to areas that are neglected for a long time, or to the level de-
signer focusing too much attention on one area of the map.

Building in Layers

An alternative to sectional building is to use the layer system (Figure 9.9). In this
case, instead of breaking up the level into manageable chunks that you will work in

completely, it involves going through the level, from start to end, in a series of
passes or layers that represent the “phases of construction” explained previously.
Start by building out the level’s hull completely, or as best you can given everything
you know at the start of production, from beginning to end, creating all the spaces
you need for the gameplay to happen. It’s not important to address truly secondary
elements like secret areas or purely decorative spaces like areas outside of windows
that are just there to give the player a view.

Map Start Map End

Basic Geometry

Gameplay Elements

NRaEFIGURE 9.9 Building a level in layers.

When the level hull is laid out, you should be able to navigate completely (bar-
ring areas that require a puzzle to be solved, or a scripted event to happen). At this

stage, you might be able to export your level data outto the art team who can begin

226 Game Level Design

working on props and textures with a much better idea of what’s needed and the
specific sizes and areas involved in your level.

Now that the hull is done you can go back to the beginning of map and work on
the gameplay layer. Implement your puzzles, encounters, and triggers. Drop items in
and create temporary geometry for critical decorative pieces that don’t exist yet, like
a table the player needs to jump up onto to access a vent. Put in the NPCs that will
populate your map, add the navigation elements that will allow them to move about
the map. Set up patrols and scripted sequences. This phase is about creating the
gameplay and seeing how it works before you put any substantial time or effort into
decorating. Once your gameplay layer is complete, you should have a pretty good
whiteboxto test your level with, and to allow other people to play and review how it
feels. Naturally, you will be missing most ofthe visuals so you won’t be ableto im-
part the atmosphere of your level to others yet, but the important part—if it’s fun or
not—can be seen and problems corrected quickly. Test, review, and update.

Once you are confident that the map is playing as you wantit, you can go on to
the third layer, the addition of visual and atmospheric elements. By this time, most
ofyour level's assets have been created and made available to you by the artists. The
decorative layer should just be about making your level’s mood and aesthetics fit
the chosen theme,as well as adding features that enhance the visual quality of your
gameplay. Change your ugly placeholder water textures to the beautiful, rippling
materials your texture artists have made. Replace your BSP cars with thefinal sta-
tic mesh equivalents.

Advantages

The major advantage of building up your level in beginning-to-end layers is that the
people supporting your map time have time to do their work. By concentrating on
the basic hull geometry and gameplay mechanics, you allow the modelers and tex-
ture artists to create the assets you'll need by the time you are ready to decorate. It
also allows you to test the level’s gameplay earlier and more completely than sec-
tional building does, which in turn allows you to determine how fun it is, what sort
of things you need to fix, and in general, how well the level does in meeting the
goals set for it at pre-production.

Disadvantages
You may ask yourself “why wouldn’t I bother to create my level in layers? It seems
likeit has the more advantages overall.” Thisis technically true; however, the human
factor can’t be ignored.It is a very hard thing to concentrate solely on one task for
weeksat a time, which is what layer-building requires. To avoid burning out or be-
coming so involved in one single process that you begin to lose sight of what you are
doing, you'll wantto switch between tasks justto give yourself a breather. Honestly,
it’s no fun to have to create untextured, visually uninteresting whitebox geometry

ChBuilding the Level Part 1: Basic Building Techniques

~~
227

day after day. The urge to decorate a room and use all the fantastic art assets that
have been building up in your level’s folder on the server will be high. This is one
benefit of sectional building—it allows the level designer to maintain enthusiasm
and keepa fresh perspective on the different aspects of the map.

Another disadvantage is that, using the example again of your game’s deadline
suddenly being shortened by several months, by building in layers you might sud-
denly need to ship a level that has all the gameplay done, but none of the map dec-
orated at all. Sectional building allows you to try to cut off the level at the point you
were building, but with a layer-built map you will need to accelerate the remaining
phases to get the map finished—there’s no good point to cut the decoration process
if all the hull and gameplay is done.

CUSTOMIZING YOUR BUILDING PROCESS

The examples outlined in the previous section were two very common and differ-
ent ways in which level designers work. These are by no means, however, the only
ways to approach building your level. As we examined in Chapter 3, there are many
different approaches to building levels and missions for a game. These examples
contain general techniques to help you; however, the best way for you to build
your levelsis just that—your own. Find a system that works for you. Maybe you are
able to work better by concentrating on each task one by one until your work is

done, working down through a list of objectives for your level. Perhaps you keep
yourself interested by flitting from one area to another on an hourly basis. You are
confined somewhat by the pipeline your team uses, by the power ofthe tools you
are using, and by how much design and documentation you started with. In the
end, however, level design is an iterative, creative, and often personal endeavor,so
find the method of working that allows you to produce the best results and modify
it to whatever demands your team setup imposes.

OPTIMIZATION TECHNIQUES

Although optimization is not always a “phase” of building your level, you must always
keep the performance of your map in mind as you work through the stages of creat-
ing your work. Optimization and keeping the frame rate high in your level will mean
not only designing with the available optimization techniques of your engine, but also

keeping an eye on how much geometry you are using in a given area, as well as how

many textures and lights you are placing. These all contribute to the overall workload
of the processor and part of your job is to make sure your level never bogs down the
machine it is playing on. A single game level might contain a staggering amount of
data. Forcing the machine to cope with rendering all thisis out of the question.

228 Game Level Design

If you are lucky, your engine is intelligent enough to know when a wall cannot
be seen through and won’t render what is on the otherside. Thisis not usually the
case, however, because having the engine constantly trying to calculate the occlu-
sion or how each surface ofthe level will hide what’s behind it, would take enor-
mous energy. Most game engines require that the level designer manuallytell the
engine what should or should not be seen as the player moves through the level. At
the very least, the designer often has to give the engine hints about whatthe player
needs to see or notin certain areas of the map. Let's now look at common ways to
keep performance high in your level:

Zones and portals
® Occlusion objects
m Spawners

Zones and Portals

Many games allow level designers to break their maps into smaller sections that get
shownto the player only when the engine determines he should actually be able to see
them. These areas are called sectors or zones. The basic theory behind a zone is that the
level designer tries to divide up whatever map heis making into largest number ofsec-
tions that visually divide each other from the rest of the map. At runtime, the engine
then turns zones on and off based on data that gets generated automatically when the
level designer compiles the map, such as what zones need to be visible from every
point in the map, and what direction the player character is facing, as in Figure 9.10.

i
Rendered zone

FIGURE 9.10 An example of how the engine determinesif it
needs to render a zone or not based on the avatar’s location and
the direction itis facing.

Building the Level Part 1: Basic Building Techniques

~~
229

SIDEBAR

The theory of sectoring your map can be confusing butit is really a very sim-
ple concept. Two rooms, A and B, oneither side of a doorway can be flagged
in the engine as different zones. When the player stands in room A and looks
through the doorway into room B, both rooms need to be visible. However,
when the player turns the character around and the doorway is no longer vis-
ible on the screen, room B stops being rendered because the engine knows that

a. It is a separate zone, and thus, it doesn’t need to be on all the time.
b. The player can’t see it anyway.

The same would go for the player standing in Room B and looking
through the doorway—Room A is visible and the engine is rendering every-
thing in it. Once the player turns the game camera away from the door, room
A disappears. Simple but effective.

The system of using “S-corridors” also takes advantage of zoning. If you
separate two zones with a transition zone shaped so that the player cannot
possibly see the zones on either end, like a right-angle corridor or s-shaped
tunnel, you can be sure those separated zones will never be rendered at the
same time.

How you break up your level will differ depending on what engine you work
with. The Unreal engine uses the concept of “zone portals” to literally seal off dif-
ferent parts of the level into zones. The level designer places special sheets, called
“portals,” of geometry thatfit snugly into doorways, vents, open windows, or chim-
neys, etc., essentially making that section of the map airtight, and the game engine
knows from this that the area sealed in by the portals is a separate zone from the rest
of the level.

Using the previous example, to build rooms A and B in UnrealEd as separate
zones, you would first create the geometry of both rooms and the doorway between
them. Then, adding the portal sheet into the doorway will mean that the next time
you rebuild your map, the rooms will be different zones.

You can see how many different zones your map is divided into in UnrealEd by clicking
on the Zone View button in a viewport,as seen in Figure 9.11. This will show the level in
3D with each zone in a different color. Be careful, though, the engine randomly deter-
mines the color of each zone and ifyour map has a lot of them, sometimes two zones can
be very similar colors, making it seem like your portals between them aren’t working.

230 Game Level Design

FIGURE 9.11 The Zone View in UnrealEd. Each color represents a different zone.

Sometimes, your engine won’t do as much work as you would like. When work-
ing as a level designer on a project, we had to build all the maps in a commercial mod-
eling and animation program, with no real editor to speak of. To break the level into
zones, we needed to group all the geometry where the zone was meantto be, and then
link it to a dummy object elsewhere in the map. The engine would look for the
dummy objects, and then know what each zone contained by following the links
from dummyto level geometry. Then, in another program, the level designer manu-
ally told the engine which zone was visible from every other zone—a visibility web.
Sound tedious? It was, and often led to mistakes and late-night rework. Thankfully,
the level design tools generally available today are much more user-friendly and pow-
erful when it comesto zoning,

Occlusion Objects

Zoning is a very fast and easy way to optimize your map in general. However, you
will find that sometimes it is either impossible or undesirable to use zones, espe-
cially in outdoor areas where sealing off the outside environment is difficult. An-
other technique can be used in these cases, often in addition to zoning, with objects
known as occlusion objects or simply occluders. Occluders are objects that tell the en-
gine not to render anything that blocks the player from seeingit, as in Figure 9.12.

Building the Level Part 1: Basic Building Techniques

~~
231

0]ele/[8e[=]3

R Rendered Object NR Non-rendered Object

FIGURE 9.12 An occlusion object and how it tells the engine what part of the level
doesn’t need to be rendered based on the position of the player character.

Occluders should be placed after you have zoned the map. Consider them the
second tier in the three-tier system of optimization, with zone sectoring being the
most important, and occluders coming after. In the Unreal engine, these occlusion
objects are called anti -portals. In the previous section, you learned that portals tell
an engine that when a player looks through a portal whatever is on the otherside
needs to be rendered. In the same way, an anti-portal tells the engine that whatever
is on the other side should not be displayed or calculated by the processor. In Un-
realEd, the level designer can place objects that are invisible to the player, but de-
fine spaces in the level and the special properties they need. Anti-portals are placed
as these volumes—they can go anywherein the level—in the middle of pillars, in
the walls or floors between rooms, or inside doors—to prevent the rooms beyond
being rendered when the doors are closed. Wherever they go, the engine knows that
whenever the anti-portal gets between the player and a part of the level, that part
doesn’t need to be there. Essentially these objects are the hint to the engine about
what parts of the level are actually blocking the rest ofthe level from the player and
what can, or should, be seen through.

232 Game Level Design

SIDEBAR

Let’s again use the example of room A and room B: The engine knowsthat the
only connection between them is the doorway. Unfortunately, both rooms are
extremely complex and loaded with decorations. Whenever the engine renders
both rooms—if the player looks from one room into the other—the game
slows to a crawl. By placing anti-portal volumes in the walls between the
rooms, on either side of the doorway, the engine now knowsto render only
what the player can see through the doorway, as the wall-shaped occlusion ob-
jects are telling the engine that the player can’t see anything on the other side
of them, and to simply not bother displaying anyofit.

Care must be taken not to place these occluders in areas that don’t have solid
geometry or something in the level that explains why the player wouldn’t be able to
see it. Placing a tall, narrow antiportal in the middle of an open field will result in a
narrow slice of the screen showing “nothingness” when the player looks across the
field and his view is intercepted by the occluder. The engine doesn’t know whether
you are placing an occlusion object in the right place or not—it simply does what
you told itto. If the walls between the rooms in this example were semi-transparent,
you would not want to use occluders because the player would expectto see some-
thing of what’s on the other side of the walls.

Spawners

The last tier of performance optimization is called spawning, and it should be con-
sidered if you have zoned your map well, and placed occluders, and still are having
performance issues. Spawning doesn’t deal with the visual limitations of the map—
too many polygons or lights, for example—but, rather, the limitations of AI and
calculating too many moving objects at a time.

Generally, the player will be working through the map section by section, and
won't see everything in the map at once. Given this, it may not make sense to have
all your map’s NPCs walking around and doing thingsifthe player cannot possibly
see them. These are actors that you can spawn in whenever you need them by plac-
ing a marker that tells the game engine “when the player activates a certain trigger,
create an enemy NPC where I am.” Spawning is a term coined in the dark and dis-
tant days of games and refers to the act of a level generating an element out of thin
air when triggered. It’s most useful for generating generic enemies or level elements
that don’t require a pre-set patrol, special behavior, or other unique attributes.
Most game spawners are simply markers in the map, in whose property attributes
you set the number and type of actor to create and when.

Building the Level Part 1: Basic Building Techniques

~~
233

SIDEBAR

To illustrate the concept of spawning as an optimization enhancement, con-
sider again the two rooms we have used for examples previously. Now there
is a door between them thatstarts closed. The player starts in room A and the
design callsfor an enemy soldier to wait in room B for the player character to
enter, and then attack him. There’s no real point to the soldier being in the
next room until the player opens the door—forthe sake of argument, we can
say that the player can’t hear him or detect him in any way other than visually.

In this case, we could simply spawn the soldier into the room as soon as the
door opens. We can set the door to send out a message to a spawner actor in
room B. We set the spawner to generate one generic machine gun soldier fac-
ing the door as soonas it receives the trigger message. Then, when the main
character actually moves through the door, the messageis sent, and the soldier
instantly appearsin the next room. By the time the door opens, the player sees
the soldier there waiting, and upon seeing the player’s avatar, the soldier at-
tacks. The benefit ofthis setup is that until the player opened the door, the sol-
dier didn’t exist, and thus the game engine didn’t need to spend time or
resources calculating his AI or rendering his model.

Although it’s safe to assume that most games support some level of “on-the-fly
generation,” your specific engine might not. There are other ways of using this
principle, however. You might be able to have some of your NPCs remain idle until
triggered to keep from too many simultaneous navigation calculations, for in-
stance. Or you might simple place your characters in a “green room”—a box far

away from the main level and teleport them in when they are needed. It doesn’t take
too much to figure out how you can use the tools your editor gives you to optimize
the map—get creative.

TEST YOUR WORK CONSTANTLY

No matter how you build your level, eventually you will get to the point where it is

time to play through and test it against the design. It plays like you wantit to,it
looks and sounds like you wantit to, and evokes the kind of mood and ambiance
that you were aiming for. There will have been big changes, small sacrifices, and
content you added at the request of others, but it’s to a point where you could in-
clude it in the game if you needed to. At this stage, the levelis referred to as “fea-
ture complete.”

234 Game Level Design

SUMMARY

Laying a good foundation for the rest of your level is vital, and part of being able to
do this is to learn good construction practices for building the functional parts of
the level—the parts most likely to cause the player problems. After a solid level hull
is constructed, you can worry about decoration and lighting.

Some lessons brought up in this chapter were

Use a good measurement system and the tools provided by your technology to
make sure everything is kept clean. Intersecting geometry, floating or detached
objects, or malformed shapes can cause a variety of problems during the level’s
production period.
Keep a cool head when dealing with scale and volume issues this early in the lifeof your map. Sometimes making sudden aesthetic decisions at this stage will
create a headache for you or someone who is working on the map externally.
Wait until the decorations are in and the lighting is placed before you make a
drastic decision on the impact ofa certain space on the player or gameplay.
Different games require different scales and size relationships between the
player character and the environment around them. Take time to work out
whatfeels right given the camera and control settings, and start from there
when dealing with scale, rather that trying to build something that is realistic
above all else.
Pick a construction method that suits how you work, but allows you to staywithin the schedule of your game. Balance the speed of construction with having
playable levels as early as possible to allow for playtesting early in production.
Optimize your map constantly. As the hull changes, you will need to check how
those changes affect how the level runs. Take time frequently to update and
separate the map into zones, place occluders, and see if there ways in which you
can improve the performance of the level.
Test your map often. Get other people to play it and watch what they do and
don’t do. The more you test, the sooner you will find problems. This seems ob-
vious but itis too often overlooked.

CaBuilding the Level Part 1: Basic Building Techniques

~~
235

AN INTERVIEW WITH LEE PERRY OF EPIC GAMES

Lee, can you explain where you work and what your position is?

Currently, I am lead level designer at Epic Games. This involves working with
the team to create the environments and game situations a player encounters
as they progress through the game, and working closely with Cliff Bleszinski,
ourlead designer to find the best ways to implement the story and gameplay
he’s trying to create in our title.

Also, a large chunk of my work is tied up in trying to hone the process
into a manageable workflow,trying to find the techniques that best allow us
to create the assets we need.

You have been vocal in the need for level artists to create level assets with modu-

larity in mind—creating fewer but more robust interlocking pieces for designers

to use while building, rather than creating many one-off decorations in later art
passes. Can you explain the advantages of this production method for both de-

signer and artist?

Absolutely. I believe efficient planning of your assetsis key to producing the

amount of assets you need fora title, without sacrificing quality of visuals.

Creating and using modular assets, such as tiling walkway geometry, or wall
details, or even modular decorative statues that function like 3D paperdolls
in your level, these approaches will save you a world of work later in the

process.
I have no doubts that many people can sit down and model and texture

an entire large environment in beautiful, full-blown, custom detail. But I also
have no doubts that most of those people won't feel like doing it a second
time, after they realize the insane amount of assets that need to be created for

a full level of unique models and textures. Ultimately it comes down to a

question of efficiency, and once you embrace working efficiently and profes-
sionally, you can quickly see that there are many hidden benefits that come
along with using a good process.

In short, the idea process breaks down to creating artwork that can be re-
utilized later in different circumstances. One could simplify it to simply mod-
eling a mesh as they normally would, and then carvingit up into subsections

to allow the designers the ability to lay out the sections differently, thereby
creating new variations ofthe original mesh. But ideally, once you're sure the

asset you're working on will be part of a modular system, you can take it

-

236 Game Level Design

much farther than that by keeping modularity in mind as you start construc-
tion at the earliest stages.

The primary technical rule here is “Grid Grid Grid.” Break your objects
downinto pieces that will snap together easily when placed on a reasonably
coarse grid setting. You can always deviate from your grid in your level once
your pieces are made, but you'll find it much harderto align meshes later in
the game if they’re not built to match up early on.

From an initial glance, the approach may seem likeit’s limiting your cre-
ative ability, but nine times out often the modular nature of an environment
will work in your favor and save you many headaches whenthe technical dif-
ficulties of level design rear their heads. And the advantages are many; mem-
ory savings, consistency in style, ease of modifying a feature throughout your
level, ease of construction management within your level, and there are so
many more.

That's a cursory overview of our design goals at Epic, and as always,
there’s always exceptions to the rules and custom centerpiece meshes to get
built . . . but in general, work clean and you're avoiding major hassles for
yourself and those who will work with your assets.
The above is one part of a greater pipeline; can you explain further your ideal
production scheme and how level design plays a part in it?

I wish I had an answer that worked for thisis all cases, but if there was an in-
struction manual that came with the game industry, well, I didn’t get a copy.

Every project has different design goals and different approaches to how
they want to accomplish that design. Moreover, every team is made up of peo-
ple who work undervery different guidelines and preferences than any other
team. A management hierarchy and workflow that works like a dream at one
company is often the bane of another company’s existence.

Forthe rare multiplayer-focused projects like Epic’s Unreal Tournament
series, there’s creative freedoms that you simply couldn’t extend to a group
creating a single player title.

For a single player project, the layout and events contained within the en-
vironment are more important than ever. People aren’t creating their own fun
within your sandbox anymore. Once you know what needs to occur within the
scope of your level, and you've verified that possibly with some loose game
flow sketches, get something in there as quickly as possible. A blank canvas is
scary, and the quicker you get something downto start iterating on, the better
off you'll be. A good rough blocked in environment is a great place to start.

—>

TU
mSBuilding the Level Part 1: Basic Building Techniques 237

At some studios, if your environment rough gets flushed out enough to
become a “level shell,” it gets handed off to artists and scripters tofill with life.

At other studios, a level never leaves a designer’s death grip clutches. Every-

thing is realized and centralized back at the designer’s desktop, and the de-
signer carries something of a management cap.

For myideal scheme, I strongly believe a team of people must be involved.

A single designer burns out quickly on an environment they're solely respon-
sibly for. In the past it may not have been an issue, but with current visual

trends the goal of a one-man level is more and more the ghost of gaming's

past. And for my 2 cents, I say “good riddance.” You need artists involved,

you need sound engineering, you need scripting input, you need input from

fellow designers, you need the help of testers, and often you need the help of
a good producerif you plan on creating an experience that will put you in the

fond memories of gamers worldwide.
A healthy knowledge of all those areas will help you, but don’t fall into the

trap of insisting you know better than the specialists around you.

What part of the level design process do you think is commonly short-changed

(pre-design, visualization, whiteboxing, tuning,etc.)?

believe interactivity is currently the golden element people are clamoring to

improve as players’ expectations soar. A few years ago you could get by with

a static cash register on a counter, but more and more people want to be able

to throw that register through the window, pry it open with a crowbar, re-
trieve the quarters from within, and cram them down the barrel oftheir gun
to use as improvised ammunition.

Interactivity is the area that you'll see more and more people and compa-
nies scrambling to innovate with, now that visuals are becoming more and
more accessible and competitive simultaneously. People will need to ramp up
this facet to stay competitive.

As both an artist and designer, what skills have led to your success in game
development?

Working well with others, adaptability, and trying new approaches to prob-
lems of development has been what's kept me on my toesfor years now. More

than ever,if you wantto be a designer, you needto be flexible in what you
know.Ifyou don’t know how to script, at least learn enough to communicate
with those who do. Gather as much knowledge as possible from the people
around you and keep an eye on what's coming down the technology and de-

sign pipes. That’s served me well.
—

238 Game Level Design

What can level designers do to work harmoniously with artists on their team?
Accept that the days of levels having your names publicly stamped on themare gone. Realize that the actual content that you require to design a reallycutting edge environment is most likely being created with many other peo-ple’s assistance, and theyall deserve credit. Accept that and work withit, gettightly knit with the people you're now depending on, and learn more aboutwhat they do in order to improve your respect for them as well as your com-munication abilities. ;

Do you think level design is a viable career path for someone with little artisticsense? Can the design be removed from the aesthetic entirely?
I believe there’s room forall kinds of designers. I've worked with designersthat come from every discipline now, and they all bring something great to thetable. The variety of design talent and scope that works on a team is what willgive you a well-rounded game as a whole.

Art is something that iseasily judged, and therefore is often judged asa pri-mary skill. You can drop something that looks reallysolid in front of someone,andit sells itself even in the form of a printed screenshot.Ifyou're weak aes-thetically, but strong in another department such as scripting, you'll need towork harderto counter that process and break through the front door; you'llhave to convince the studios that you've got other skills to compensate. But,keep in mind, that often the most critical and accomplished designers are theones that learn the new tools, create the interactivity, step up to pushing theworld of design itself, and more than anything, create the FUN that goes intothe environment, notthe lens flares.
We don’t play art, we play games.

1 ¢ Building the Level Part 2:
Visual Design

239

240 Game Level Design

In This Chapter
In a Fight Between Graphics and Gameplay. .Structure and Beauty, Perfect Together
The Style Guide
Texturing
Lighting
Placing Props
Additional Visual Elements
Summary
Interview with Mathieu Bérubé of Ubisoft Entertainment, Inc.

EEEEEEsEER

will begin with a cinematic or introduction sequence thatillustrates the im-pressive technology and immersive graphics behind the game, giving theplayera taste of what's to come. This is call aesthetics. The visual impact of a gameis usually what hooksa player in at the beginning. After that, the gameplay has totake over and keep him playing, or all the graphics in the world won’t help. Thatbeing said,part of your responsibility is making your level look good, and there’s somuch atmosphere and emotion you can create in your maps through graphics andsound alone, it’s a huge responsibility. It’s also a tremendous amount of fun, likewallpapering your apartment, if you could change the pattern and color of eachwall in the blink of an eye. The best levels are those that play well and feel good, sothis chapter will describe everything you need to make great aesthetics.

(3 enerally, a player sees the level before he hears or even plays it. Many games

IN A FIGHT BETWEEN GRAPHICS AND GAMEPLAY . .»
Who would win in a fight between graphics and gameplay? It’s a trick question—the answeris neither. It used to be,in the long distant past of game development,

nology, and they expect great-looking games for what they pay. This doesn’t meanthat a game with less impressive graphics won’t be popular—a fun game will sell de-spite the lack ofeye candy, but certainly there are benefits to having a player pickup your title’s boxatthe store and drool over the in-game screen shots on the backpanel. It may very well be why he decides to buyit.Graphics aren’t king, but neither is gameplay the end-all-be-all for the modernplayer. A good mix of both is needed for a video game, and the levels therein. This is

ER
REITER

Building the Level Part 2: Visual Design 241

similar to modern cinema. When people go to the movies, they may not be going to

see the latest in special effects, or to see whole cities wiped out by computer-generated

tsunamis; they may simply want a good story, or to be distracted from their worldly

woesfor a few hours. On the other hand, they still demand an artful director, believ-

able acting, and sets and backdrops that don’t look like they were painted by a three-

year old. People want to be entertained, not just amused. Most movies that are all

special effects and little substance don’t get repeat viewings. Movie goers want a bal-

ance of exciting visuals, acting, and compelling narrative, much in the way that

gamers require you to deliver a compelling mix of aesthetics and gameplay in the lev-

els you make.

STRUCTURE AND BEAUTY, PERFECT TOGETHER

The geometry in your level isn’t simply there to sit and look pretty,it’s there so the

player has something to walk on, stuff to hide behind, or things to move out of the

way, it’s a structural element with a specific function in the world. However, not all

geometry has to be structural—a lot of it needs to be decorative, to make a visually

pleasing environment and not a bunch of concrete walls and lightbulbs hanging

from sockets. The visual aspect of designing game spaces is very similar to the prac-

tice of architecture, though obviously on a much smaller scale. Building a game

environment requires balancing the two fundamental elements of spatial construc-

tion, the Functional and Aesthetic, just as architects have done since the earliest

days of human culture. For instance, visit any well-known Gothic cathedral like

Notre Dame in Paris and you will discoverit is not only visually stunning, it is also

a marvel of structure. Flying buttresses, columns, vaulted arches, and tapered wall

thickness are all used to create an overwhelmingly spacious interior that affects

every visitor who enters, but more importantly are used to distribute the enor-

mous weight of all that stone above. This careful balance of both strength and

beauty translates directly to your need to balance the geometry of your level in

ways that provide a smooth-running map that looks just as good asit plays.

In level design, you must always be aware of why you are placing a decorative el-

ementin your map. Do you need it, or are you simply bored with the space you are

working on? It’s all too easy to start throwing crates into a room because it looks too

empty. After a while, you may have so many crates that the player won't be able to see

the exit anymore. There is always the danger that you will be sacrificing the structure

of your level—ergonomics, flow, or difficulty, for example, by over-attention to dec-

orative details. It doesn’t even have to be visual to affect the flow of the game—sound

effects and music can also result in a negative experience if used inappropriately.

242 Game Level Design

SIDEBAR

Neil is creating a map where the player must sneak through a theme park gonewrong, patrolled by deadly robotic monkeys. The monkeys have a limited vi-sion distance, and make a lot of noise when they walk, giving the player ampletime to avoid or hide from them when he hears the clanking oftheir gears.One day, Neil decides he’s going to try to give the player an immersive audio
experience, and meticulously places hundreds of sound-emitting actorsaround the theme park to play random cricket sounds, The result is definitelyimpressive—at any point in the map, the player can hear the sweeping chorusof cricketsall around him. So much so,in fact, that it’s almost impossible tohear the robot monkey assassins until they have drawn their swords and arerunning noisily for the main character. As cool as the crickets are, it’s notworth having to raise the volume ofthe monkeys’ movement, or use anothermethod of alerting the player to their presence, potentially breaking someoneelse’s map. Reluctantly, Neil pulls out the sounds so they won't affect thestealth gameplay ofthe level.

The lesson from this sidebaris that you must always make sure the level playswell and provides a consistently immersive experience for the player, even if thatmeans sacrificing an aesthetic component. If your modeler insists on placing his
scaffolding model in your map, despite you telling him that it is too narrow to letthe player pass through easily—you need to put your foot down. Balancing formand function is one thing, but the interactivity of a level and the frustrations of theplayer are still paramount, and decorative elements that jeopardize the player’sability to use the level should be prevented from appearing in your work, whether
you or another team member is responsible for decoration.

If you are making a map by yourself, it’s both easier and sometimes more dif-ficult to gauge how much decoration and aesthetic treatment your map needs.

THE STYLE GUIDE

The amount of control you have of the look and feel of your levels is largely basedon how much ofthat information has been decided already. Some teams insist ona style guide for the levels. The creative director orart lead,in conjunction with theart and design teams, creates this documentto outline how everything in the gameshould look. Often, the style guide contains general information and rules for thelevel designers about the kind of assets that can be used in the levels, the relation-

Building the Level Part 2: Visual Design

~~
243

ship between specific elements (for instance, the style guide may determine the

exact light settings you need to set fora street light in your level, or it may limit your
choice of ground textures to a particular set of concrete materials). The style guide

may also include basic themes and settings for your levels, with examples of pre-
ferred lighting, architectural elements, character costumes, and such. More detailed

information is given for artists in creating the game assets such as precise palettes
of colors, naming schemes for textures and objects, and how different components
will go together (are the pots and pans rendered and placed separately, or are they
modeled as part of the stove object?).

If you have a style guide, many of the following pointers will be determined
somewhat by the information it contains. Get the most current copy ofthe style

guide when you begin building your level and keep it updated when you start dec-

orating. Regardless of whether you have a style guide for the team or not, you will

still need to make many aesthetic decisions as you beautify your levels.

TEXTURING

Textures are flat images (Figure 10.1), often produced in 2D image programs like

Photoshop , and sometimes taken from real-life photographs or scans, that you place

on the surfaces of your level. Textures give form and add detail to flat surfaces. A

drainpipe madeas level geometry will start as an untextured cylinder, meaningit is

created without any kind of visual indication of what it is meant to be (other than

shape), just as in a modeling program. You can then apply an image of, say, rusty
metal, to the surface of the pipe. The image will wrap around the cylinder, and al-

though it may not look perfect, it now tells the player a lot more about what that
round thing sticking out of the ground is. If you add a series of rivets to the texture,
the pipe is now rusty metal with rivets running down it. Even though the rivets aren’t

really there in 3D,it will look like it to the player, or at least pass all but a close exam-
ination, creating another layer of realism. When it comes to making a truly stunning
environment, the biggest factors are the texture and lighting choices you make. The

basic geometry that you have createdis really just like a blank canvas—it gives shape

to your creation, but no matter how complex the geometry is, adding textures and

lighting toit will turnit into a living, breathing world with a visual history ofits own.
Textures are measured in pixels, by height and width. Texture sizes are in the

(width) x (height) format. This is why people will often refer to a “64 x32 texture.”

They aren’t scoring it; they're just referring to its dimensions. Because of the way

computers preferto store information, textures come with their dimensionsin fac-

tors of two, and so common sizes for a length and width follow the “by two” rule—

2, 4,8, 16, 32, 64, and so on, which we covered in Chapter 8. In the Unreal engine’s
default scale setup, each pixel is equivalent to a unit of measurement in the map,

244 Game Level Design

FIGURE 10.1 A level texture.

making it easier to match up or map textures perfectly to surfacesin the level. If youcreate a wall in UnrealEd that is 256 units high and 256 units wide, you know that
a 256 x 256 texture will map perfectly onto it with no rescaling necessary.

Textures, Shaders, and Materials

Throughout this chapter, we will refer to the images you apply to your level as tex-
tures. However, fewer and fewer games are using 2D textures for levels. Generally,
games now also use shaders, which are best described as special properties that de-
scribe how the surface they are applied to should look, or react to the surrounding
lighting. Some examples are “self-illuminated” shaders that can make a surface
glow in the dark, or “bump-map” shaders that make the image you apply to yourlevel look like it has depth—parts that are “bumpy” or meant to stick out of the sur-face have highlights and shadows cast by the level lighting as if they were reallythere, instead of simply being drawn onto a flat image. It’s all just trickery, however,
created by the graphics hardware of the machine the gameis running on. Shaders,
textures, and the results of combining both for complex surface effects are often re-ferred to as materials. In UnrealEd, anything you apply to the level geometry is
called a material, whether itis just a flat texture, a shader, or many of each com-bined into a single material. Materials can be used for many special effects that give
extra life and a much greater sense of realism to the surfaces they are applied to

Building the Level Part 2: Visual Design

~~
245

(Figure 10.2). However, even though the process of creating materials is generally

more complex than simply making a square image and slapping it onto a surface as

a texture, how you will apply them in the level will be the same, and the following

information applies to both.

FIGURE 10.2 A standard 2D texture and the same imagesas a self-illuminated shader.

Applying Your Textures Correctly

Most editors make applying textures to the surfaces in your level quite simple. You

select a single material from a list of what's available, and click on a surface to apply

it, or simply drag the texture from the list to the surface you want it to appear on.
Once it’s on there, you can manipulate it to some degree.

Textures have a special coordinate system they use to refer to the surfaces

they are applied to. We already discussed how in 3D space, the three dimensions

are called the X, Y, and Z axes. Because a texture is a 2D image, however, it doesn’t

work well to give it XYZ coordinates. The universal system for “mapping” or ap-
plying textures to a 3D surface is to use what are called the U, V, and W axes.

Generally, you won’t need to deal too much with the W axis in simple level tex-

turing, unless you are rotating a texture on it. However, the U and V axes you will

use constantly because these tell the engine the height and width of the texture
compared with the surface on which the texture is placed. When you alter the

texture on the U axis, you are altering the width ofthe texture on the surface. When

you alter the V coordinate mapping of your texture, you are basically adjusting
the height. This is a simplified explanation but will serve you well most of the

time.

246 Game Level Design

Common ways you can alter the appearance of a texture are using the following;

Rotation
Scaling
Moving
Flipping

Figure 10.3 provides some visual reference about what these manipulationslook like.

FIGURE 10.3 A texture applied correctly, rotated, moved, flipped on
an axis, and scaled.

Often, you will need to make slight adjustments to a texture once you have ap-plied it. Thisis especially true when you want textures applied to different surfaces tomatch up correctly—for example, in the corner of a room, you apply a wall-covering
texture to each wall, but they might not line up automatically. You will probably need
to adjust the alignment or the UV information, soit looks like both walls are contin-
uously covered.

Using Photos as Textures

If you are making your own textures for your level, consider the relative merits be-
tween using an actual photo of a real-world surface and creating a new texture
specifically for your needs. Using a photograph has many difficulties; for instance,when you take a photo, generally thereis some sort of lighting in the scene. If youtake a picture of a window at noon, there may be a strong shadow on the wall be-

TT
TE
EERIE.

Building the Level Part 2: Visual Design 247

neath the windows sill. If you simplyslap this image on the wall of your level, that

shadow cannot be manipulated. It may not look right unless the lighting in your
level is meant to look like noon, with the sun very high and casting shadows straight

down all around the map. You can imagine your map set at sunrise, with long

shadows being cast over the faces of buildings—except for this one window frame

with a shadow that seems to be defying the direction ofthe sun.It sounds like a triv-

ial thing, but don’t be fooled. This one element significantly affects the illusion of a

real or consistent space. Players may find themselves noticing that shadow even if

they aren’t aware of what's wrong with it. I's much easier for the brain to pick out

what's wrong ina situation than what's right.
Hand-painted textures, on the other hand, can be created with the specifics of

your level in mind. You can add specific elements (rust, rivets, wood grain, or blood

splatters) to a texture that you create, or modify in an image-editing program,
that will reflect the environment the texture goes in. For instance, you might create

the same window frame we used in the previous example, but now remove the

shadow and replace it with a sunrise-appropriate shadow that slants along the wall

below at a sharper angle and looks darker than the noontime one. You might also

add more appropriately colored highlights to the frame, ora reflection of the level's

sky in the window glass. Now you have tied the texture into the environment so

that it looks like it belongs. The rule of thumb here is never apply a digital or

scanned photo directly to a surface in your level without first modifying it appro-
priately. It is virtually impossible that the photo will match the conditions of your

map completely.

Tiling and Nontiling Textures

Your texture artists will generally create two kindsof textures: surface textures and

model textures. You can apply surface textures on different parts of your level. Be-

cause you won't really know beforehand the exact dimensions of your level, possi-

bly not until you actually ship the game, it’s impossible to have the texture artist

make textures that fit all of the various surfaces of your level. Some textures would

also need to be literally thousands of pixels to a side just to cover the larger surfaces

in your map. Because ofthis, most of yourlevel textures will tile. This means that

the textures can be repeated over and over again, edge to edge, across the surfaces

of your level without any obvious breaks. Much like wallpaper, the artists need to

make sure that the edges of thetiling texture line up correctly so that seams or lit-

tle inconsistencies where the texture meets the edge ofits neighbor don’t occur.

When you are applying tiling textures to your level, let the artists know if a texture

has visible seams, or there is a very obvious spot that can be seen to repeat across the

surface, and they should be able to correct the texture so it works.

Nontiling textures are usually those created to add detail to a surface without

having to use polygons, such as a texture for a window, a door, a stony patch on the

248 Game Level Design

ground, or a burn mark on wood. Although you can still try to tile these across asurface (the game engine doesn’t know whether a texture is going to tile or not),they will look bad.
Nontiling materials are also created for specific objects and characters in the

game. Texture artists create these kinds of textures (also called skins) by breaking thevarious bits and pieces of the model into flat planes and then creating texturesto fit
them, as demonstrated in Figures 10.4 and 10.5. The real estate the texture artist has
to work with on the image is often limited, so artists play a sort of puzzle game, try-ingto fit all of the model's parts into one 128 x 128 pixel texture, for instance.

FIGURE 10.4 A flattened texture for a
game model.

FIGURE 10.5 The same texture applied to the model.

Building the Level Part 2: Visual Design

~~
249

This results in a texture that cannot be used for anything but that model. Ap-
plying it to level geometry will look like Figure 10.6, which is only useful if you're
making a level to demonstrate how horrifically wrong things can go when texturing.

FIGURE 10.6 The misuse of a nontiling model texture.

The Dangers of Stretching Your Textures
(and Your Relationship with the Artists Who Made Them)

In Chapter 8, the need for a good system of measurement to be able to match up
textures to the surfaces of the level was discussed. Often, you will need to scale a tex-
ture to meet the exact dimensions of a wall or floor.If this means only a few units
of measurement, and barely noticeable, it is an easy fix, but it is quite easy to keep
nudging the scale of a texture on a surface until it becomes stretched beyond what
is visually acceptable.

Often artists are more picky about the correct scaling threshold of a texture, but
that’s their job. You may think something looks fine, but get a good deal of criti-
cism or comments back that a certain wall looks stretched. In this case, you can ei-
ther make, or request a new, larger texture from the art team that willfit the surface

you are trying to apply it to, or you can rework the geometry to make the surface fit
the texture. Both are valid options—it just comes down to which is the easiest or
quickest solution.

250 Game Level Design

Breaking Up Geometry to Support Texturing

Cami
ON THE CD

It’s easy to go ahead and block out your level without any heed to the decoration,but it’s a shortsighted way to build. Chances are your texture artist has some ideas
about the best way to apply his work to your level, and working with the art team
as you build, or at least creating a set of guidelines about the use of textures, will
help you to get your map decorated much faster. One common example of this is
breaking up a wall to support trim textures. Trim is considered the sort of archi-
tectural or decorative flourishes that are common in human structures. Molding
along the top of the wall where it meets the ceiling, or floor,is trim. Elaborate door
frames, chairrails, brickwork, or window casements are all trim.

These elements could be included in the wall texture itself—throw it on a ver-tical surface and voila, you have a wall complete with trim. The trouble happenswhen you have a wall that is too big or smallto fit the wall without stretching the
texture to fit. It makes more sense for the artists to create the trim textures sepa-rately from the base wall texture so that you cantile the wall image as much as youwant and still have properly sized trim around it. To do this your level needs to be
broken up or split to accommodate the different textures that will share the plane.This may sound complicated, but in UnrealEd it’s a very simple procedure that
can be performed in a number of ways. The CD-ROM for this book containsa link
to the Unreal Developer Networks in the Resources folder for online tutorials and
guidesthat cover this aspect ofthe editor. Make sure you talk to your artists about
how they would like the levels surfaces broken up before you start building. It maybe that they don’t care so much, orit may be that they want every wall split at a
height of 256 units so that no stretching occurs.

Keeping Your Texturing Consistent
We have already discussed the importance of keeping a theme throughout yourlevel. Thisis the same on a smaller scale for your texturing and lighting. If you have
literally hundreds of textures to choose from when it comes time to decorate your
map, it may be tempting to use all of them, just because they’re all so great-looking.Not only this a nightmare in memory use, butit probably also won’t look very goodif the textures are meant for different levels. The use ofa handful of textures cre-
atively is often much more impressive and thematic than simply going for the
“Most Number of Rock Textures in a Single Level” award.

For instance, in a level set in an underground mine, you’ll need certain types of
textures—smooth rock for the sides of the tunnels and areas that have been drilled
by machine. Rough rock for naturally formed caves or side-passages. Wood tex-
tures for support beams, braces, and trusses, and metal for iron bands, rails, and
metal deposits. Within each ofthese categories, you don’t wantto use too many dif-
ferent variants. Using fouror five different wood textures is going to be unnecessary

Building the Level Part 2: Visual Design

~~
251

given how few ofthe level's surfaces will be using it. Variances within this category
may also be noticeable—you don’t wantto use a hardwood flooring texture. Nei-
ther do you want to use a wood texture with detailing like nails or rivets, from a

palette model, or wood thatis polished or decoratively stained. You want natural-
looking timber textures all with similar grain and color consistency to maintain the
look of a real space.

Consistency Within Texture Sets

Another form of consistency is making sure you don’t mix and match textures too
wildly between texture “sets” or collections of textures that are intended by the art
team to be used together and not combined with other sets. Thisis often seen in

games that have wildly different environments. For instance, Half-Life features

mostly industrial, corporate, and military-themed levels for most of the game, and
everything is very firmly routed in earthly environments. At the end of the game,
however, the player is transported into a completely different dimension, for which
Valve's artists created extremely “alien” textures. Although some of these textures
were used in earlier parts of the game (the player encounters laboratories that fea-

ture alien creatures under study, and some of the alien textures are used here to
“foreshadow” the player about where he will end up later in the game), using these
alien textures more frequently in the earlier levels for trim, ground textures, or
simply as replacements for normal structural elements would have looked dramat-
ically out of place.

If you are making your own levels for fun or for a noncommercial project, you
might be downloading many ofthe excellent textures and materials available for
free on the Internet. The same caution applies here, however—it’s easy to go crazy
and use as many textures as you can. You will be better off picking one or two col-
lections of textures by the same artist that meet the needs of your map and stick to
using those, and keep a consistent style in your map, rather than simply down-

loading textures singly by how they look on a Web page.

Colors Within Textures

Most professional texture artists will work with you to find outthe kind of lighting
conditions and environmental elements that will indicate the palette of your level

and the lighting it will require. Thisis because you might get some peculiar or even
downright ugly results in your level when a vividly colored texture meets a vividly
colored light and the two blend to create an extraordinarily ugly color. For in-

stance, if you make, or use a deep blue carpet texture on the floor of your spaceship
corridor, and then use a red “emergency” lighting scheme to illuminate the level,

those floors are going to become purple. Even though this realistic, it might not be
the kind of color you want for your map.

252 Game Level Design

Consider how your textures will react to other level elements. Even the audio in
your level may need to tie into your textures. Having large, echoing footsteps whenthe player walks through a room is appropriate when you've used metaltextures, orflat, reflective surfaces, but not when you have tapestries or walls lined with books.

LIGHTING

Dramatic lighting is critical to the look and atmosphere of your levels. You may notbe the one who decides the final placementof lighting, but certainly a level designerwho understands the basics of how spaces should belit, and the effect of differentkinds of lighting on the player can design better maps with mood in mind.The advent of 3D technology has allowed the creation of extremely realisticlighting in game environments. At first, these environments were pre-rendered af-fairs, with scenes and levels created in high-end programs and then presented to theplayerasflat backgrounds. Later, with games such as Doom and Duke Nukem 3D,mapmakers were able to create basic lighting effects that simulated real-world con-ditions and effects.
Typically, the kind of lights you will work with are very similarto real-life light-ing used in movies and TV shows. However, lighting in 3D virtual environmentshas one great advantage over film and television—the lights don’t actually need asource to come from. Light can be generated where and when needed, which is apowerful feature whenit comes to a game environment.

How Light Works

In reallife, everything we see is actually light bouncing from an object into our eye(when we see an apple on a table, it’s really the light reflecting from that apple andhitting our eye that we perceive), or shining directly from an emission source (likelooking at the sun). Light has always been enigmatic to those trying to explain howit works. At best we know thatit is a form of energy, that it radiates, and that it haselectromagnetic properties. It behaves like a wave, butalso has properties of particlesin travel.
Luckily for us, visual lighting is about knowing how light behaves in the realworld, and is less about the scientific phenomena behind how we see. We can lookto examples all around us, in movies, photos, or even written descriptions, to learnhow to simulate a realistic and visually impressive lighting scheme fora level.
Although we will talk about the need to simulate certain effects of light, when

wetalk about level lighting, we are generally just placing sources—the engine han-dles how the light bounces around and simulates the effect of our eyes “seeing” itin the world.

Building the Level Part 2: Visual Design

~~
253

RGB Versus RYB

The primary colors of light are different than that of physical pigments, such as
paints. When you learn your primary colors in school, you learn that the three pri-
maries are red, yellow, and blue. However, the properties of light colors are slightly
different. You create colored lighting using red, green, and blue instead. Although
not incredibly important to know, it can often throw new level designers off when it
comes to specifically picking a color for a light, or trying to replicate a color scheme
from reference.

Game Lighting

In games, every year technology improves game lighting techniques, allowing for
increasingly realistic lighting effects. A decade ago, the process of “ray-tracing” al-
lowed computers to simulate how light bounces around an environment, allowing
for effects such as reflectivity or creating objects that looked like they were made of
glass-like transparent materials. More recently, a technique called radiosity gave
3D content creators the power to simulate light bouncing off different sorts of sur-
faces and materials, as well as how the color of light travels and blends in lit areas.
Already the experimental processes being used for cinematic lighting of 3D envi-
ronments for film are creating scenes that cannot be differentiated from real-life
pictures. It won’t be long before lighting within game levels will be comparable to
that of photographs also.

The tools that level designers are given to light environments are similar to that
of commercial 3D rendering packages, but much more basic. Generally, the cost of
lighting a game environment is high, and at the time of this writing, games cannot
support the kind of lighting movie artists enjoy because of realistic performance
factors. For this reason, designers need to light within the bounds set by the plat-
form and engine that will run their game. This is not to say that game lighting is

crippled in any way—amazing-looking maps are being made every day, using the
same basic lights and techniques that have been used since Doom wowed a genera-
tion of gamers.

Level Lighting

Calculating a single light’s effect on a level is simple. A handful of lights in a map
can be computed by most engines with ease. However, modern-day games have
levels that can contain hundreds, ifnot thousands of light actors, each contributing
to the environment, and each requiring the game hardware’s attention to do its
work. For this reason, there are several standards in which light effects are handled
in games. The two most important, and the two we will cover here, are lightmaps
and vertex lighting.

254 Game Level Design

Lightmaps

For most ofthe level's surfaces, there is no need to calculate how the light looks re-peatedly during play. Although real-time lighting, where lights act realistically andcast real shadows, is becoming more prominent in high-end games, most gamescurrently are still using basic lights thatare placed by a level designer and renderedonce to create the effect ofthat light as a permanent feature of the level.Most of the geometry used in a game level is static—it doesn’t move, or changeform. Because ofthis, the lighting doesn’t need to change either. Each lightis cal-culated once, and its effectis added to the overall lighting conditions ofthe map.Once the lightingis fully rendered, the engine builds a set of unique textures, calledlightmaps, automatically and applies them to the surface geometry ofthe level. De-pending on how much detailthe level designer sets, and how much the engine canhandle, these lightmaps can be very smooth, very high-resolution textures that givethe effect of crisp lighting when seen in the level. The processis easy as long as thelightmaps are applied to large surface areas. The smaller the polys are on a sur-face—ifit is very complex, or organic—the more a lightmap needs to be facetedand the longerit takes to produce, and the risk of errors or visual glitches appear-ing increase dramatically. In UnrealEd, only BSP can use this kind of lighting, asitis generally very low-poly and easy to create lighting maps for. For other types oflevel geometry, terrain, or static mesh for example, vertex lighting is used.
Vertex Lighting
This method of showing light affecting the level geometry is extremely fast for theengine and hardware to calculate, so it can be done “on-the-fly” andis used exten-sively when lighting game characters. An NPC can’t use lightmaps because thegame never knows how that character will be oriented to, andits distance from, anyofthe lights in the level. So vertex lighting is used to make sure the effect ofall thesurrounding lights converge on that character as he moves through the environ-ment. Anything dynamic that will (or could) move in the level, and anything thatuses very complex geometry is generally a preferred candidate for being vertexlit.So now that we know why it gets used, let’s 80 over how it works.We know that everything in a game that has physical form uses polygons to de-

shading on each polygon. So ifthe light hitting the vertices at the top of a wall ismuch brighter than those at the bottom, the color ofthe entire wall will blend fromlight to dark, top-to-bottom. Figure 10.7 showsthe difference between an objectusing a lightmap, and the same object using vertex lighting.

Building the Level Part 2: Visual Design

~~
255

Sir=1e(eR [c5g

FIGURE 10.7 A BSP object using a lightmap, and the same object as static mesh using
vertex lighting.

You can probably see the difference—thevertex lighting is a lot cruder, and the

fading between light and dark areas is more drastic. The level designer generally
does not choose the kind of lighting that each type of geometry uses; however, it is

important that you know the difference between the various lighting techniques
and how to use, and abuse, them.

af Generally, the more verts a 3D mesh has, the more lighting data it can support. In plain

J English, this means that a higher-detail model will light much better, and more
: smoothly, than a low-polygon model will. In some cases, vertex lighting can look as
MOTE a00d as a lightmap if the mesh has enough vertices in the right places. This is important

to remember ifyou have a model that isn’t lighting very well. Ifyou can, increase the
number of polygons, or ask the artist responsible to make it a more complex model, and

see if that improvesthe visual quality when lit. In other cases, you may simply need to

have the vertices moved to an area where they are exposed to light better.

Other Lighting Systems

As game graphics get better (seemingly exponentially), these artificial methods of
lighting are becoming increasingly obsolete. Splinter Cell and Deus Ex 2, for example,

256 Game Level Design

have both used methods of trying to calculate light dynamically and shade everythingin the level as it affects everything else (we will cover this in more detail in the section
on real-time lighting a little laterin the chapter). However, these games used this kind
oflighting sparingly, and in conjunction with lightmaps and vertex lighting, to main-
tain a high performance. As this book was written, Doo 3 had just hit the shelves and
its big claim to fame was that it uses real-time lighting extensively, creating an un-
paralleled level of lighting that reacts realistically to what happens around it.
Lightmaps and vertex lighting will be around for a while, butas time moves on, level
designers will need to familiarize themselves with the ever-increasing demands, and
complexities, of emerging lighting techniques.

Lighting Parameters in Games

How lighting is controlled differs from technology to technology. Different gameplatforms are more orless likely to support different typesof lighting based on their
internal hardware. However, the basics remain consistent enough. All lights in
games are emitted from an actor or object you physically place in the map. Para-
meters that affect the light are set on this object, and the physical location of the
light object is usually called the origin. Lights in games generally have the following
properties:

® Brightness
® Range
®m Tint
®m Direction

Brightness

The brightness ofa light indicates how much energy it is emitting. For a level, the
brightness is how bright the lightis atits origin. Brightness also determines how
much thelight will affect nearby surfaces, how strong the shadowsit casts will be,
how much it will dominate nearby lights, or be dominated by them, and so on.

Range
A light’s range is the distance the light travels from the origin. In reality, a lightsource’s range is often determined by the brightness of the light and the surround-
ing atmospheric conditions. A bright light on a foggy day won't travel very far,forinstance. Gamesare virtual environments, however, and the designer can choose tohave extremely bright lights travel only a short distance on a clear night, if that’s the
desired effect. Range is generally measured in regular game units, or expressed as adiscrete numerical property. If the latter, you might need to experiment which how
much or how little to adjust the range property to get your light to travel the correct

Building the Level Part 2: Visual Design

~~
257

distance. The range ofa light works hand-in-hand with brightness. If you have a

light that is setto shine for 100 units, beyond that number of units from the origin,
the light will stop illuminating things. However, if the light isn’t very bright, the no-
ticeable effect between ten and a hundred units might not be so noticeable. Con-
versely,if the light is extremely bright, the fade from light to dark will be obvious,
as shown in Figure 10.8.

FIGURE 10.8 Two lights with identical ranges butvery different levels of brightness.

Tint

In everyday life, every color has some kind oftint or colorto it. Light can be emitted
from a source that gives it a particular tint—a blue flame, for instance—and then it

can be further changed by conditions between the source and the viewer, such as the

way that earth’s atmosphere affects the color of sunlight as it passes into our eyes. In

gamelevels, color is used to match lights to the sources they are meant to come from,
and to evoke certain emotions and concepts, which we will look at further in this
chapter. You will usually be able to pick the color ofa light from a palette in the ed-
itor or type a numeric variable that determines the light’s tint in the level.

258 Game Level Design

Direction

Light travelsin a straight direction until it is interrupted by something that reflects
it. Light will be cast from a source in all directions unless it is constrained or focused
by something—a shade, a cover, a screen with holes, or a lens, for instance. In game
levels, you will often wantto direct lightto a particular area of the environment. In
such cases, you will be able to determine the direction for a particular light in the
engine by rotating the direction of the light. In UnrealEd, each actor can have an
arrow that indicates what direction itis pointing in, if direction is important. Light
actors use this arrow to show where they are focused if they are set to be directional.

Common Light Types

Common level lights (Figure 10.9) can generally be classified in the following cate-
gories:

B® Point
® Spot
m Fill
® Ambient
m Celestial

Point Light

Fill Light

Spot Light
Sun Light (celestial)

FIGURE 10.9 Common styles of lighting shown placed in a level.

Building the Level Part 2: Visual Design

~~
259

Point Lights

Point lights are the workhorses of level lighting. Generally considered to be nondi-
rectional, because they shine outin all directions from their center (or point, which
gives them their name), you can use a point light to represent the effect of a light
bulb, fluorescent light, torch, or gas lamp in the level. When you are whiteboxing
the map,it is easy to throw a few point lights around the room to illuminate the

space and start visualizing how the lighting will take shape.

Spot Lights

When you need to direct your light to one particular place, or have the effect of a di-
rected light, using a spotlight is the best way. Just like a stage spotlight, these types of
light actors are directional and cast a circular spot oflight where they are pointed.

When a spotlight is cast at an angle on a surface, it results in a triangular beam
of light on that surface, like a light shining down along a wall. This effect is often
used to bring out wall textures in otherwise dark areas.

Fill Lights
Fill lights are very dim point lights that are used to simulate the reflection of light
onto a surface indirectly. For instance, in a dark room with sunlight coming through
the window, the ceiling may pick up someof the light reflecting from the floor, or a
wall, even though it isn’t being lit directly. With a radiosity lighting engine, this sort
ofeffect can be achieved automatically; however, in an engine like Unreal Ed, with a
more basic lighting system, you can use fill lights to simulate this sort of effect, as
demonstrated later in Figure 10.15.

Ambient Lights

Ambient lights affect entire regions of the map, or even the entire map, by raising
or lowering the overall level oflight. This kind of lighting affects all the surfaces in
the area regardless of whether they are receiving any other illumination. Ambient
light will also add or decrease the intensity of existing lights in the map within the
area of effect and can also affect the color of the map’s lighting, which can be use-
ful for creating outdoor effects such as the orange glow ofa sunset, or indoor effects
such as the cool blue mood of a mortuary at night. In UnrealEd, the ambient light
is controlled by zone. A special object within each zone called the Zonelnfo actor has
a property in it that the level designer can adjust to control the brightness and color
of that zone’s ambient lighting.

Celestial Lighting

Sun, moon, and star light are common formsof creating ambiance in a level, as well

as being useful for lighting whole outdoor areas uniformly. Celestial light is

260 Game Level Design

commonly called parallel lighting because light from the sun and moon hits all of
the earth from one direction—all shadows cast by the sun are uniform in angle and
length relative to whatis casting them, as shown in Figure 10.10. In some engines,
celestial lighting is created by setting special properties in the level (as in Quake 3),
whereas in Unreal, the designer places an actual light actor called a sunlight in the
environment and usesit to direct the light and set the strength and color. Although
the actor is called a sunlight, it can easily be used to simulate moonlight (low in-
tensity, blue-white light), starlight, or light from an alien sun on a distant planet.

FIGURE 10.10 Sunlight in a game environment.

Dynamic Lighting
The light types mentioned previously are regarded as static lights. Their effects are
calculated once—when the level designer builds or compiles the map, and the en-
gine uses that calculation for everything that it lights in the game. Dynamic lights,
on the other hand, move or have some kind of animated effect. A siren effect, for
example, is a colored dynamic light, that rotates its focus in circular motion around
its origin. A strobing fluorescent bulb in a level is commonly created by a dynamic
light that is set to flicker on and off.

These lights can be expensive to render because they require a constant or reg-
ular recalculation of their effect on the level.

Building the Level Part 2: Visual Design

~~
261

Real-Time Lighting
As rendering technology for games becomes more advanced, we are seeing more
and more games using real-time lighting. These lights are actually calculated con-
stantly, generating realistic shadows (often referred to as dynamic shadows, which
simply means they are created on-the-fly by whatever moves in front of them) in-
stead of using lighting that is baked into the level at the time it is built. Real-time
lighting can create amazingly real levels, and interesting interaction possibilities. If
a lightbulb is emitting such a light, and it moves, the shadowsit casts will lengthen
and shorten as it swings back and forth, for example. Many games use a combina-
tion of real-time, dynamic, and static lights to create the level lighting, to keep per-
formance high. Static lighting is usually the least taxing on the game hardware, and
real-time lighting is the most expensive, requiring a great deal of hardware acceler-
ation to render. Figure 10.11 shows an example of dynamic shadows in a game.

FIGURE 10.11 A room with dynamic shadows cast by a light calculated in real time.
©2002-2004 Ubisoft Entertainment. All Rights Reserved. Splinter Cell, Sam Fisher, Ubisoft, the Ubisoft logo, and
the Soldier Icon are trademarks of Ubisoft Entertainment in the U.S. and/or other countries.

262 Game Level Design

Self-llluminating Objects

In some cases, you won’t need to place a separate light object in a level near the ob-
ject to be lit. Some game engines allow light-emitting objects to use “self-illumi-
nating” shaders. In these cases, light can sometimes be calculated as emanating
from the lit parts of the object. For instance,if a computer screen prop in a level is
textured with a self-illuminating material, the screen might cast light on the desk it
is sitting on, the keyboard and mouse, a wall nearby, and so forth. To control the
light settings of such objects you will need to adjust the settings in the properties of
the illuminating material. These formsof lighting crate a much more realistic effect
than does trying to simulate with basic static lights; they often come at a greater per-
formance expense, however, and should be used sparingly. Don’t texture whole
walls in self-illuminating materials, unless you're prepared to deal with the wrath of
your low-spec player.

Level Lighting Techniques

Placing lights in your levelis easy. Making them work for you is harder. The prin-
ciples of lighting your environment are similar to other visual media such as stage
set design or lighting in film. The fundamental rule is to use as few as possible. Too
many lights, too many colorsor intensities, and the viewer becomes confused. Al-
though not always applicable, a general rule of thumb is that fewer lights are better.
See how little you can get away with and still have the effect that you want, instead
of saturating an environment unnecessarily.

Traditional Lighting Methods in Levels

In traditional lighting, two main types of light are important to know—the key light
and thefill light (we already described what fill lights are—they give the subject
“form” by defining the shape, volume, and density ofthe subject). The key lightis
what directly illuminates the subject, highlighting it as something of interest to the
viewer. This is the general formula for, say, lighting an actor in a toothpaste com-
mercial, but it can also be applied to game environments. Looking at Figure 10.12,
you can see that the central light is the key light, shining down into the focus ofthe
room. Around it are fill lights, casting a softer ambient light that gives a sense of
depth to the scene.

Not every scene can be lit this way. Having a single keyorfill lights in the area
may be unrealistic in the game’s setting. However, in level design, we often use the
term “key lighting” to describe the critical lighting for gameplay, much in the way
a film director uses key lighting for critical elements in the frame. Level designers or
environment artists will place key lights in areas that are important to the player—
highlighting entrances and exits, at the end of dark corridors to show the player
there is something beyond. Key lighting in levels can be subtle too; for instance, in

Building the Level Part 2: Visual Design

~~
263

FIGURE 10.12 Key and fill lighting. Notice how the spotlight picks the box outas the
focus of this room.

a dark street, light shining from an open window several stories above the player
may indicate an alternate entrance into a house other than trying to sneak past the
guardsat the front door. A very weak glow near a vent will draw the observant eye
to that part ofthe level.

In this way,the traditional sense of fill lighting in levels becomes more about
decoration and giving depth to the environment. Fill lighting is incidental or dec-
orative lighting—torches lining a corridor in a tomb, or the glow of computer
monitors on the command deck ofa starship. Fill lighting has a practical side—the
player needs to be able to see where he is going, and fill lights show the way, but
they should not interfere with key lighting that is informational, or indicative.

Colored Lighting

The use of color in a level is an important part of setting the mood and creating a
sense of atmosphere. Like lighting in general, less is usually more when it comes to
picking the colorsfor your level. The first thing you must decide when you begin to
light is how the setting of the level will affect the colors you have to choose from,
and what the mosteffective schemes will be. For example, if you are making an

264 Game Level Design

adventure game level with a volcano theme, you will wantto restrict your main
palette of colors to fiery or hot colors—reds, oranges, and yellow or white where
temperatures are extreme. A color scheme doesn’t need to be complex, it just means
you are picking a few colors that are relevant to your level, and sticking to them
more than others, avoiding sources or objects that would require you to place many
different and clashing colors all in one area—unless your game happens to be the
Attack of the Rainbow Creatures from the Planet Psychedelika, in which case, go nuts.
It’s often unrealistic to expect one color scheme is going to be enough for an entire
level. Many game levels encompass very different environments. A level set in New
York City at night might feature different color palettes for outdoors, inside an
apartment, outside a club, and inside the kitchen of a fancy restaurant. Keeping
each of these environments consistent within itself is the important part.

Color Contrast
Human brains see contrast exceptionally well. Our minds are tuned to seek rela-
tionships in what our eyes perceive, and contrasting colorsare a great way to shake
the player’s brain and shout “Wake up!”

A level with lots of different colors fighting for space in one area can be dis-
tracting and often ugly. However, choosing some contrasting colorsfor your light-
ing scheme can have a powerful effect on the mood of your map. The cold blue light
of the moon streaming into a room from an open window on one side, and the
warm glow from a dying fire on the other can create a very realistic and pleasingly
colorful effect. Red light streaming from a doorway in a corridor lit by soft green
can really pull a player’s attention to that area , but it can also make a player feel ill,
if the colorsare too vivid or too wildly contrasting. As always, use subtlety and re-
straint when placing contrasting or dissonant colors in your level. You may think
the effect isn’t powerful enough, but the player may get the message quite clearly.
Level designers can lose track of how an environment looks to someone seeingit for
thefirst time and seek to intensify the colors and lighting in the map to compensate.
Takea step back every now and then, or even better, get the opinions of other peo-
ple on your team to make sure you aren’t going overboard.

Consistency of Lights and Sources

As you place lights in the level, make sure that they are kept consistent with the
sources they are supposed to be coming from. It sounds like a simple thing, but
every year games ship with levels that feature tiny bulbs casting massive pools of
light around a room, or searchlights that barely register on the environment or
characters. The source of the light in the level—a window,a streetlight, a burning
tank, or a glowing mushroom, will indicate what sort of settings you need to apply
to that entity’s lighting. Figures 10.13 and 10.14 show the difference between a con-
sistent and an inconsistent light-to-source relationship.

a

A

aa

a

ea

eS

a
te

cd

Building the Level Part 2: Visual Design

~~
265

FIGURE 10.13 A realistic lighting relationship.

FIGURE 10.14 An unrealistic lighting effect for the object supposedly emitting the light.

Lighting should be consistent throughout your level. Sunlight should not be
different from one courtyard to the next unless there is a rational explanation—time
has passed, or the weather has changed, for example. Likewise, once you start plac-
ing streetlights, keep them pretty much the same. It’s okay to have the occasional

266 Game Level Design

burnt-out, flickering, or damaged streetlight, butif every one in your level has a dif-
ferent intensity or range, it will look very odd indeed.

To keep your lights consistent, consider “grouping” an object with the appropriate light
actor and then duplicating that group whenever you need to replicate the light effect
elsewhere in the level. In UnrealEd, you can combine elements in a map as “prefabs”
that can be saved and reloaded as a group. In this way, you can place a spotlight actor
undera streetlight prop, and once the spotlight is correctly tuned to get the effect of the
streetlight shining down, copy and paste the two together around your level as needed,
instead of setting up multiple lights and having to tune them all individually. It also
means thatif someone else takes over your map before you havefinished lighting, he
has a working example of the streetlight to use.

Contrast and Shadows

Light is only one part of what makes level lighting important. The creative use of
shadows is also part of your environment’s unique atmosphere. There are two
kinds of shadows in a level. The first kind is shadow that is simply the lack of light—
the dark corner of a room, or a dark passageway. The second, and more useful, is

the shadow that you “sculpt” by placing something in front of a light source to
make an interesting mix of light and dark on a surface. Just as the contrast of col-
ors gives depth and complexity to your mapin a pleasing way, the contrast between
light and dark is something humans find particularly fascinating. Just look at the
photos by Ansel Adams or watch a classic black-and-white movie like Casablanca
and see how the use of light works to create rich scenes without the need for color
at all. Contrastis a fundamental way in which we see,it allows us to make sense of
a visual image and use our pattern-loving brains to quickly assimilate information.

In Figure 10.15, we see three versions of the same scene—one with flat, ambi-
ent lighting, one with simple lights, and a final version with complex shadow pat-
terns. Which seems to create the best sense of space? It’s number three, the
shadowed hallway. Notice too, how the shadows pick up certain areas of the wall
texture and leave others dark. This effectively masks the tiling texture used on the
wall, which is obvious in the first two versions. Another feature of shadowsis that
they allow the level designer much more freedom in showing parts of surfaces to the
player and reduce the problem ofa texture tiling across a surface immediately look-
ing artificial.

A common way to add dramatic shadows to a level is to place lights behind a
“screen”—anything with holesin it that will create shadow patterns where thelight

hits a part ofthe level geometry. There are countless examples of this technique in
games—Ilights behind rotating fan blades, torches in cages, or sunlight behind lou-
vered shades. In general, this is the best way to “shape” shadows to your liking. You
can havelights shining through where bricks have fallen from a wall to cast a series

Building the Level Part 2: Visual Design

~~
267

FIGURE 10.15 Three versions of the same corridor
featuring successively more complex shadows.

of rectangular lights across a room. Other methods include placing lights behind
existing geometry that will result in a broken light area (placing a light on the ceil-

ing above clusters of pipes) or using projected textures, which we will discuss next.

268 Game Level Design

Projected Textures

When a level needs very crisp, well-defined shadows, it can be beneficial to use a
projected image of a shadow instead of trying to create one using an actuallight.
Projected shadows are black silhouettes textures that are literally projected, or ap-
plied, onto surfaces in the level. In the UnrealEd, the level designer can drop a pro-
jector actor into the map and assign it an image to project. This can be almost
anything chosen from the material browser. Once chosen, the actor will project that
image out into a cone for a specified distance. When something interrupts that
cone,it picks up the projected image. This is exactly how projection works in real-
ity, when you put something between the projector and the screen. The direction of
the actor can be altered as can certain ways the imageis projected, what will take the
image, and what will remain unaffected. The benefits of projectors are obvious—
but they come at a price because they are relatively expensive to calculate when
compared with simple shadows.

Allowing the Player to Affect Lighting
As we have seen, games truly differentiate themselves from other forms of visual
media by their interactivity. This is especially true with lighting. In a movie, the
viewer can’t force the main character to turn the lights on in a dark room. However,
we can certainly give the player the option to do that in a level. A trigger object like
a switch, linked to a dynamic light, is all that is really needed to have the player con-
trol whether an areain the level is lit or not. Thisis the basis for many stealth or tac-
tical combat games where the player is trying to make enemy territory more
traversable. Shooting out searchlights, cutting the electrical powerto a building, or
throwing water on a torch,—all allow the player to create a better environment in
which to skulk or hide. Inversely, throwing on the lights in a dark warehouse and
blinding the enemies inside wearing night-vision goggles, or simply being able to
see opponents better with the skylights open, is a very powerful way to let the player
control lighting and becomes a type of gameplay all to itself. When creating your
lighting, think about this, and ask yourself where the player might benefit from—
or simply enjoy—control of the lighting in an area of the level.

Lighting in Multiplayer Levels

When creating a single player level, you need to think about the theme of the map,
about creating an atmospheric space through believable and decorative light layouts.

For multiplayer maps, however, the level designer must think of other con-
cerns. As we have seen, lighting can be used to pick out certain areas or objects in
space as important, or used to draw the player to look in a certain place. In multi-
player maps, the player needs to be informed very clearly about whatan area is or

Building the Level Part 2: Visual Design

~~
269

what it contains. There isn’t much time to stop and think about the function of a

space when someone has you in his snipersight.
Consider the use of color, common associations with certain colors, and how

those colors are used in the kind of game you are making a levelfor. If you are cre-
ating a “capture the flag” map where the level is divided into thirds—neutral terri-
tory and each team’s home turf—you might want to adjust the lighting in each
team’s base or home area to make contrasting team colors. Players on the Blue team
will know the enemy flag is near when they are in a red-lit and textured building,
Likewise, the absence of specific team colors indicates to them that they are in a

space between team territories, without having to consciously think aboutit.
Consistency also helps a player determine where critical areas are in the map as

they passby.If the level designer places all the weapons in that map in alcoves or on
pedestals that produce a green glow, the players will look for that color when

searching for a new weapon. They will quickly associate colors with items or area
functions if you give them consistent clues through color.

Common Lighting Mistakes

Lighting is a powerful tool, and it is all too easy to make mistakes. This chapter has
covered manylighting issues that can work against a level; here are some of the big-

ger mistakes that are found commonly in levels ofall genres:

® Over and under lighting
m Using too many lights
® Not all lights need sources, notall sources need lights

Over and Under Lighting

One difficulty with developing computer and video gamesis that there is no con-
trol of what sort of device the player is watching on, or the quality of the image.
There are differences between different brands and ages of televisions and moni-
tors, and there are differences between two monitors of exactly the same model and

lifetime. Make sure your monitoris relatively consistent with your co-workers’
when developing the levels. If your studio hasn’t calibrated all the team’s monitors
or production televisions, some people may come to you claiming your level is too
dark, too light, or just right, and they may be incorrect. Check your sources and test

your level, or watch it running on other people’s monitors to make sure you aren’t

steering your lighting in a bad direction.
When it comes to being over-lit or under-lit, a level will usually look better on

the darker side of things. However, it will also be harder to play. An over-lit level
will look less appealing, but the player will clearly be able to see where heis going.
Make sure that no matter how dark a level gets, the player can always make out the

270 Game Level Design

basics of his surroundings. In a dark room without lighting, there should be enough
ambient lighting for the player to find the door without having to just move in ran-
dom directions until the door opens. A good rule of thumbis that you should just
barely be able to see the texture on a surface when playing in normal lighting con-
ditions—if the level’s base lighting gets any darker than that, the player will quite
easily become muddled.

Using Too Many Lights

There’s no point in using three lights where one will do. Instead of manipulating
the settings on a single source, a level designer or environmental artist will often du-
plicate an existing light several times until the light reaches the desired intensity.

A big problem with this is that more light sources in the map will (depending
on the engine) affect performance, and it will weaken the shadows in your map.
Why is this? Well, consider that each source of light in a room casts a shadow. The
more points from which light is being emitted, the more light and the more shad-
ows. Shadow definition will weaken and soften. Essentially, you begin to lose con-
trol of your “dramatic” lighting.

The same can be said for using a few light actors for a single torch—they will all
cast light from slightly different positions, creating severalslightly different sets of
shadows. To the player this will look like one blurry shadow coming from thelight
bulb. Clear shadows and lighting, as well as improved performance, come from
being frugal and smart with lights.

Not All Lights Need Sources, Not All Sources Need Lights
One of the best parts about lighting in a virtual environment is that you don’t always
have to have a logical source for a lighting effect. Many companies that make 3D
computer-animated movies take advantage of this to create “fake” lights for reflec-
tions on shiny surfaces or to brighten areas that realistically would have insufficient
means to create enough light. Remember this when you go to put in a moody glow
in a space and think to yourself, “How would that be there?” Sometimes an effect
looks so natural that no one will notice that there aren’t any real reasons for the ef-
fect to be there. A common theme ofthis bookis that part ofthe level designer’s tal-
ent is being able to judge what the player is likely to accept or not. Sometimes
aesthetic features outweigh the need for logic, which is useful to remember when
lighting a dull space or part of a level with little “real” source for lighting.

In the same way,it is very tempting to always place a light actor near parts of
the map that look like they should be illuminating everything around them. How-
ever, it is rare that everything in the map needs an actual level light. A good exam-
ple of this kind of “overly enthusiastic” lighting can be seen in maps set in urban
areas at night. If there are windows high up on buildings, textured to look like the

Building the Level Part 2: Visual Design

~~
271

rooms beyond are lit—it is not always necessary to place a light by that window.

Lighting is best served where the player will interact with, or at least appreciate, it.
It is also a valuable resource for how the level will run. If you don’t need to use that
light, let the texture do the hard work in convincing the player that there is a real

light coming from that window.

PLACING PROPS

Just like texturing and lighting, placing decorative propsin levels is not something
all level designers do. However,it is very common that a designer is given a set of
objects, or given access to the assets being made for the game, and allowed to place
them in the map for atmosphere.

Prop placement generally happens in waves. You might go through and place

props here and there while you are whiteboxing, or put in as many have been com-
pleted already bytheartists. Invariably, though, more will be made, approved, or
edited as you work, so you will wantto go back and place new objects in the level be-

fore it is done. Placing non-interactive objects and props usually comes with a great
deal of tweaking and fine adjustment as the level evolves and the designer revisits

areas after a period of time to see what is working and what isn’t. On the other hand,
there are some good rules to work by when adding detail and clutter to a map.

Adjustments for Character

Very subtle changes between identical meshes can help break up the sense of mo-
notony that comes from a series of identical light sconces along a wall, or a room
full of perfectly parallel desks. In reality, furniture gets bumped, carpets get rum-
pled, maintenance workers hang light fixtures badly, and everyone has a personal

preference on how they position their keyboards on a desk. Give the environment
some life and take the time to adjust each prop you place so thatit has a character

of its own. Twist a few desks just a little in an office so they aren’t all in line,for in-

stance. Small adjustments in rotation, positioning, or even scale can create a much
more natural-seeming environment.

Anecdotal Placement
Clutter is a term used by level designers and artists to describe filling up the empty

spaces in an area of a level with static propsto give ita lived in or real-world appear-
ance. It doesn’t necessarily mean clutterin a negative way. For example, a blank wall

in a room might have a few bookcases placed along it, and though it doesn’t affect the

player’s navigation or look untidy, it breaks up the monotonous look ofa tiling wall-

paper texture—this islevel clutter. Like the concept of character adjustments,it is also

272 Game Level Design

a waste of polygons and texture memory to simply throw junk around a level and
considerit clutter.

When adding this kind of prop, try to think of the anecdote behind it—how it
got there, what purpose it serves, why it wasn’t removed, and so on. Even the small-
est of props can tell a story. A teddy bear on a basement step. A still-steaming cof-
fee cup on a table in the mortuary. By creating mini-narrative behind what you
place,it will look less random and more integrated into the environment. You can’t
go through this process with every prop you add, but concentrating on the decora-
tions along thecritical path, or that the player is likely to see, is a good idea.

Clutter Without Collision Problems
When creating good visual clutter in an area, always remember that the main char-
acter, and the NPCs, need to move through the level unhindered by badly placed
objects. Sometimes ifa level designer places an object far enough away from a wall
that a gap is formed, a character can get stuck between the object and the wall per-
manently, forcing the player to have to restart or load a previously saved game.
Likewise, some objects have collision boundaries that don’t quite match their phys-
ical appearances. The cabinet that looks like the main character can pass by might
have a collision object that sticks out further than the visual mesh, and the player
may catch on it as he passes by. Player ergonomics comes before visual decorations,
so make sure your clutter isn’t affecting the flow of the map.

ADDITIONAL VISUAL ELEMENTS

Othervisual effects available to level designers and artists don’t quite fit into the
realm of texturing and lighting butarestill essential parts of the visual design process.

Skyboxes

When you look out over the rooftops of a level, or out of a window at the distance,
you are usually seeing the skybox (also referred to as the skydome). Thisis the tech-
nique ofcreating a fake horizon to simulate a world beyond the confines of your level,
making the world feel bigger and enhancing the mood and theme of your maps. Al-
most all games use a skybox system if they require the player to see outdoor areas
(Figure 10.16).

Basically, the skybox can work in two ways. The easiest wayis just to cover the
entire map with one giant dome—like an inverted salad bowl—which is textured
with an image of sky, clouds, a giant alien moon, and whatever other details are
needed for the level environment’s setting. The disadvantage with this feature is
that unless this dome is massive, the dome will skew as the player gets nearer to one
side or the other. This is to be expected—if something is visible but far away, like a

Building the Level Part 2: Visual Design

~~
273

FIGURE 10.16 An example of a skybox.

mountain, walking a few paces won’t make it noticeably larger on the horizon.

However, closer objects like buildings, or a phone booth in the midground, will

grow in relative scale as you approach by only a few steps. Thus, this method of sim-

ply pasting a sky around the entire level doesn’t work exceedingly well (though a

surprising number of games attempt it).
The second method, which is almost universally adopted by commercial

games, is creating the sky environment in a separate area and then allowing the

walls of a level to “see into” that environment. Imagineif the horizon of your level
were really a box made up of movie screens that were projecting a 360-degree view

of another place. Now say that no matter how far you walked in any direction, those
movie screens would never get any closer—that’s the benefit of a skybox. By paint-
ing the walls of your level with a special texture that allows itto show a view from
the skybox, the game engine does just that, allowing a very detailed skybox envi-

ronment, with a sky color, fog, clouds, terrain, and other visual effects to be seen
“over the horizon” in the actual level by the player.

Fog

Fog is a simple but amazingly effective visual effect that also has performance ben-
efits in most engines. In real life, when water vaporor fine particles gather in a

274 Game Level Design

dense cloud, it obstructs your view as a cloud. When you're in the cloud, it only al-
lows you to see a short distance before the view fades into a single color. This is
what fog does in games, allowing the level designer to set a value in the environ-
ment that tells the engine to create a “mass” in the distance into which the view dis-
appears. Three factors generally determine the fog in the map:

Start distance is how close to the camera the fog begins to affect the player's view.
End distance determines at what distance from the player camera the effect ends.
Colortells the engine what color the fog needs to be—a designer could makeit
blue-gray for smoke, or light grey for morning fog, for example.

The less distance between the start and end, theless subtle the effect generally
is, and the longer the distance, the more naturalit seems for general atmospheric
fog. The player should rarely be allowed to feel claustrophobic or have the view re-
stricted too much unless it’s a special (and brief) requirement for the level—a burn-
ing building or falling through murky water, for instance.

In real-life conditions, there is always a haze in the air—it comes of having an
atmosphere on our planet. The haze may be heavy,or it may be light, but it has the
effect as described earlier. Earth’s atmosphere will often begin to occlude very dis-
tant objects such as mountains or skyscrapers, eliminating detail and color, even-
tually leaving them as muted silhouettes against the sky, and finally eliminating
them from view. As a natural condition, adding fog to a level will often give it a
much more realistic feeling. The difference between a map with and without fog
can be quite dramatic. Figure 10.17 shows the difference before and after fog is
added in the same level.

FIGURE 10.17 Notice how fog enhances the scene (right).

Building the Level Part 2: Visual Design

~~
275

The technical advantage for fog occurs when engines are intelligent enough to re-
alize that when an object in the level is completely obscured by fog, it doesn’t need to
be rendered anymore. This means thatif a level has a lot of detail, fog can be added,
and brought in close to the game camera, allowing the player to only see a little of the
detail at a time. This won’t work in a level that is meant to be set in—and subse-
quently textured and lit like—a sunny meadow, say. However, for preexisting condi-
tions where fog would limit the view—rain, snow, a sandstorm, San Francisco in the
morning, or London at night—fog can be used for visual and technical benefits.

Ground Fog

Some engines allow a level designer to set fog on the Z axis—up and down—to cre-
ate the sense of water vapor collecting low to the ground. Thisis a great effect for
cold or damp environments such as cemeteries, cold storage rooms, nighttime
deserts, or tacky nightclubs. Although the benefit of culling distant geometry isn’t

very useful here, the effect of ground fog can add a great deal of dimension to a

map. This effect can be simulated easily, however, by layers of flat planes mapped
with semi-transparent mist textures and stacked low to the ground instead, with
collision turned off so the player avatar can pass freely through them.

Particle Effects

Particle effects are probably the most useful type of special visual element in games
today. Essentially, a particle effect, or emitter, is an entity in the map that creates ac-
tors, gives them a direction and a velocity, allows them to interact with the world
for a set period, and then “kills” them by removing them from the level. Think of
sparks being generated by a welder’s torch. The sparks are short-lived points of light
that spray out from the point where the torch hits the metal, and die out very
quickly. The shower goes for as long as the torch is held there, generating more and

more sparks. The number of sparks at any one timeis fairly consistent, however,
because the new sparks are being created at about the same rate they are dying.
Sometimes the sparks fade out before they hit something. Those that fall on a

nearby surface may bounce off or lay on the ground before they stop glowing.
Now think of the sparks replaced with sprites (small 2D images that always face

the game camera) or models, and you have the concept of a particle effect. Literally

any kind of moving effect or “mass” can be made with an emitter. An emitter can
be set to generate large sprites of storm cloudsthat float across the top of thelevel,
with very long lifetimes. A particle effect can be used to generate fast-falling sprites
of raindrops all over the environment, giving the impression of heavy rain.

Using actual 3D models, emitters can generate “debris”—a collection of small
3D meshes that represent chunks of masonry, parts of cars, shards of glass, what-

ever needs to be ejected when something is hit by a bullet or blown up. These effects

276 Game Level Design

can be used when needed—called up by the engine when a bullethits a window,forexample. However, in the hands of a level designer, an emitter can be set to usemodels for environmental features such rocks tumbling down from a cliff, mete-orites, chunks of ice floating down a river.. . the listis endless.

SIDEBAR

An example of using an emitter in a creative way can be seen in Harry Potterand the Prisoner of Azkaban for the PC. In this title, the first levelis set on atrain moving through the country side. To get the effect of motion, the train
remains static and all the elements outside of the train’s windows in the level
are set to move. The ground textures pan across the map opposite to the di-
rection the train is meant to be traveling, for instance. To enhance this effect,
particle effects generate trees and make them movein the same direction and
speed as the texture on the ground, then destroy them when they are out ofview ofthe train. From the outside the level, this looks like trees appearing onone edge of the level and racing across the ground to the other. However,from the inside ofthe train, the effect is very effective—it really seems like the
trees are zooming by because the train is in motion.

These effects can often be attached to other actors in the level—a smoke particleeffect to a car’s exhaust, or a small emitter that generates “ripples” around a charac-ter when it enters water.
As useful as theyare, particle emitters aren’t great for everything. They can be

a resource drain on the hardware because they generate lots of geometry at a highrate, which can be taxing to calculate. Particles don’t generally have collision, sothat the engine doesn’t need to work out how each single particle needs to interactwith the level surfaces it hits. Some engines do have the option of particle effects
using real-time physicsto calculate collision, but this should be avoided unless theeffect really depends on it.

To keep performance high, restrict emitters to where you really need them.Don’t try to replicate visual effects that can be done more easily, but might takelonger, using less costly techniques. The numbers of particles generated, how com-plex each one is, and how long it will remain alive in the level—all affect the engine.Keep the numbers low and work up if more detail is needed, rather than startingwith a complicated effect and trying to strip the numbers down, which will take alot longer.

Building the Level Part 2: Visual Design

~~
277

SUMMARY

The look ofa level is important, not just to hook the player at the beginning ofa
level, but to support the aspects of the level that aren’t just gameplay. The atmos-

phere, the theme, and the uniqueness of the environment are all enhanced by at-
tractive visual design. Visual elements also create a better play experience for

players, as we have explored in this chapter. The use of lighting and textures to en-

lighten players, guide them, and warn them, without forcing the information, is

part of the level designer’s talent fortelling a story without words.
We looked at manydifferent visual techniques that are available, butit is im-

portant to remember that they don’t all need to be used. Picking the right visual

treatments and carefully applying them to your level will result in a product that
players talk about for years.

INTERVIEW WITH MATHIEU BERUBE OF UBISOFT
ENTERTAINMENT, INC.

Mathieu, ifgameplay is the immediate challenge before the player, how do you go

about planning a level? Do you generate a pool of experiences on paper and string
them together to make a level? Or do you plan a basic level flow and identify
“beats” where you will go back and create immediate experiences on a later pass?

This question is a bit personal, in the sense that I don’t think there’s one bet-

ter way to do it. Each LD has his favorite way of level planning, though we're

being asked more and more to put everything on paper before building any-
thing.

My own way of doing thingsis that when I come onto another project, |
take a few days to build a documentI call the Gameplay Ideas doc. In there,

using all the game ingredients,I try to combine them in the most interesting

manners to come up with the most gameplay ideas possible. Doing this, what

happens is I find way too many ideas for a single level, so the doc becomes a

general reference tool for anybody starting his level planning.
Then, using the doc as a tool, I enter level planning. On paper, in a docu-

ment I call the Level Design doc (LDD), I create the level structure: what kind
of areas are in the level, how are they connected, what objective are there, how

are they accomplished, what kind of enemies will you be facing, etc. But most

importantly, for each area I list what the intended gameplay is: whatis the
—>

278 Game Level Design

obstacle, and in what way can the player overcome it. This is really important
because it’s the best way the rest of the team can understand your intention,
and having them understand it means that the tools you need from them to
be able to build your gameplay will probably come sooner and in better shape
than if they wouldn’t have had any paperreference.

So yeah, I guess it’s safe to assume that I do generate a pool of experiences
on paper and string them together to make a level. Butthis generalization
lacks a few important details. A lot of factors come into the equation of choos-
ing the right gameplays and building the right sequences of them. Things like
level theme, how farin the gameis it, doesit teach a new skill, has it been used
already, if so can it be made harder,etc.

So when the LDD is complete and approved, its time to start building the
level.

Does this mean the creative part of the jobis over, that everything that needed to
be thought about is done? That for the next months, your brain can go on a va-
cation while you do the grunt work? ;)

Nope. Certainly not.
You mention planning a basic level flow and identifying beats where I

would go back and create immediate experiences on a laterpass. . . This is ap-
propriate too, because the LDD can never cover more than 80% of the player
experience. A lot of the small things in the level will not be covered in the
LDD, like where does this guy take cover aftera firefight? Or how lit is this
hallway, etc. You need to stay focused as you go about these small details, and
if stuff gets cut because of different reasons, you need to be even more creative
in finding solutions that keep your level’s quality high. Going back into your
level on a later pass, like a few months after, can also help you find weaknesses
to your initial design and react accordingly, something that often allows huge
leaps in overall polish ofa level.

With the amount ofcreative energy needed to design, build, and decorate a level,
often a designer can be burned out by the time it comes to actually creating game-
play. How do you overcome thatsort of block when you’re designing play spaces?

The answer actually lies in your question. First, you mention level designers
“decorate a level.” Thisis something thatis slowly going away in our indus-
try, as it should. We wantlevel designers to work as muchas possible on the
minute-to-minute gameplay of the game, and to leaveall the aesthetic aspects
to other persons, often called “level artists.” By removing all graphical re-
sponsibilities from level designers, save from the very rough basic geometry,

—>

Building the Level Part 2: Visual Design

~~
279

we give them more time to experiment with the engine, to work closely with

game and Al programmers, to work with the designers and scriptwriter, to
tweak their gameplays, etc. Which in the end, makesfor a better (and prettier
too) game.

You also mention that “often a designer can be burned out by the timeit
comes to actually creating gameplay.” That should never happen. Creating

gameplay should be thefirst step to anything the level designer does. Before

actually sitting down and building a level, he should have taken the time to

think on what his intentionsare for the level he’s building, what kind of situ-

ations he wantsto put the playerin, and write all of this down on paper. It'sa
fact that this processis too often overlooked still today. Building gameplays
shouldn’t be about where do I place this guard, how high is this platform, how
far doesthis enemy patrols,etc. It should be about the immediate challenge.
Whatis the current obstacle the player is facing and how isit possible to get

past it, and what makes the situation unique and fun. Once the basic game-
play ideasare found, then you can start thinking about how you want to build

your environment around them.

Building the Level Part 3:
Theme, Investment, and
Atmosphere

281

282 Game Level Design

In This Chapter
® Dissonance Strikes Back
® The Elements of a Great-Feeling Level
® Theme :

® Player Investment—Believability and Consistency
® Atmosphere
® Summary
® An Interview with Rich Carlson of Digital Eel

great screenshots. However, when the player is actually in the level, able to
explore his surroundings, investigate interesting areas, and feel real feelings

based on encounters, looks alone do not create a compelling experience. A level
needs substance—atmosphere, ambiance, and a themeto tie everything together.
In Chapter 4, we discussed the need for “water cooler” moments in a level. This can
often be through the atmosphere alone. Given enough tension, emotion, and be-
lievability, players may rave about a level simply because of how good (or creepy,
empty, exciting, and so on) it feels rather than how well it plays. So, without further
ado,let us explore these concepts further.

A
s we examined in the previous chapter, having an attractive level makes for

DISSONANCE STRIKES BACK

As a level designer, you are responsible for the visual impact of a level to some de-
gree. While your artists or creative director may be making sure the high-level looks
are catered to, you need to make sure the small things aren’t forgotten. Players aremuch more likely to notice something out of place or blatantly incorrect in your
map than they are to notice how realistic or pretty the shrubbery looks.

Say your level is set in ancient Egypt. Don’t put medieval tapestries in, or a
room full of nuclear detonators. Thisis because the way humans thinkis based on
patterns, and when everything is flowing along smoothly visually, the player is “in-
vested” in the game world, but as soon as something weird pops up the player’s
brain will shout “Whoa! What's that doing there?” On the other hand, you can add
some elements that are slightly dissonant but less likely to jerk the user out of the
experience. For example, Biblical and Egyptian folklore have many tales of magic.
Placing magic-wielding temple guards or platforms that float above a deep abyss
with no apparent method of suspension—these elements may just be accepted as
“mythical Egypt” by the player who so far has seen nothing historically inaccurate.

Building the Level Part 3: Theme, Investment, Atmosphere 283

If you are creating a futuristic level with an Egyptian theme, try to tie the more
dissonant elements into the theme. If you needto place a flying vehicle in a medieval
level, make it look likeit is made from rough-hewn timber, crudely sewn leather and
furs, and held together with iron bands and nails. Just becauseit didn’t exist in a his-
torical era doesn’t mean you can’t makeit look like it was. For example, in the film

Stargate, the main characters travel through a dimensional portal and find them-
selves under attack from a technologically superior enemy with an Egyptian flair—
their powered battle armor looks likestatues of Egyptian gods that we haveall seen
in museums. The architecture on their spaceship is made to look like space-age ma-
terials with mysterious internal lighting, but it still conforms to a real sense of Egypt-
ian art and architecture. This is a thematic approach to the design ofthe film, much
in the way you should apply your theme to the visuals in your map.

SIDEBAR

Experienced level designers can often get away with limited forms of disso-

nance, when they intentionally want to shock the player or make him feel like

something is out of place. Placing nuclear warheads in an Egyptian pyramid
may feed a story element—perhaps your game is driven by a conspiracy the-

ory of ancient aliens who built the pyramids returning to reclaim the earth.
The warheads may be placed there by a secret government agency intent on
wiping out the returning alien craft.

Until now we have talked about thematic dissonance as being undesirable
because it causes the player to question his surroundings, or our attention to
detail as level designers. However, for manystorylines, making the player ques-
tion himself, his surroundings, his motives, or his purpose is desirable. A game
where the player is stuck in a dream or a nightmare, for instance, can break the
theme every now and again to remind the player his surroundings are notsta-
ble. A soda can in the middle of a Victorian bathhouse level mightstir paranoid
feelings in the player and prepare him for the revelation that he’s stuck in some
kind offailing virtual reality. This planned form of dissonance allows the care-
ful level designer to create specific emotional states in the player—wonder-
ment and realization, which we will examine later in the chapter.

Generally, if you aren’t familiar with the theme you have chosen, or has been
chosen for you already for your level, start researching it. The more you know
about the architecture of the period and place, especially, the more believable space
you will create.

284 Game Level Design

THE ELEMENTS OF A GREAT-FEELING LEVEL

The laundry list of critical aesthetic elements needed for a great level experience dif-
fer as wildly between level designers, as levels do between genres. Here, however, are
common if not critical elements you'll need to address when building the level:

Theme
® Investment (believability and consistency)
= Atmosphere

THEME

Style

We touched on the theme of your map in Chapter 7. However, it’s one thing to
simply pick a keyword or simple theme concept when you first begin to design, and
it's an entirely different feat to make sure your chosen themeis represented fully
and completely throughout the level.

The theme of your map will help ground your player in the environment and
create a sense that heis in a real space—even ifthat space could not possibly exist
on earth, or within the bounds of our own reality. The theme you choose will de-
termine different things in your environment, such as the following:

Architectural style
Natural elements
Sound and music
Character accents and costume
Lighting
Puzzle components
Al behavior
Weapons and items

Keeping things continuous, architecturally, will help the player’s belief thathe is in
areal place. Avoid sudden transitions to completely different-looking areas or forms
of architecture. Although the player may not be a scholar in historical architecture,
mixing different decorative periods, such as Art Deco (lots of geometric shapes and
bold colors), Gothic (gargoyles, narrow arches with pointed tops, tall columns), and
Megalithic (large stones with spirals carved into them, stacks of flat rocks piled to
make shelters, standing stones) will simply confuse the player and make him won-
derif he skipped to the next level by accident. Mixing architectural styles can, how-

ads

tacit

Building the Level Part 3: Theme, Investment, Atmosphere 285

ever, be successful ifit is used consistently across the whole game. For instance, if

your gameis set in an alternate version of the future where the Roman Empire never
collapsed, you might have a theme across the levels that uses a blend of historic
Roman and modern-day materials and building styles (skyscrapers built with
Roman columns going all the way up and round-arched windows, for example).
Conversely, mixing architectural themes in-levelis only useful if you want to make
the player feel uncomfortable. Otherwise, stick to the elements of your theme, and

try to make nonthematic elements fit as well as you can. If you need an elevator in a
medieval castle, explore how you can pull it off using technology and materials of the
day. For instance, in modern-day Thailand, they use bamboo scaffolding instead of
steel because bamboo is strong and flexible, and grows naturally in that climate.
That’s an appropriate thematic take on an architectural element.

Natural Elements

Much as the architecture in your map should reflecta time, period, and culture, the

naturally occurring elements, such as trees, plants, rock formations, and so forth,
should also remain consistent with what you have chosen for your map. For in-

stance, if your themeis a post-apocalyptic desert, placing a leafy oak tree on top of
a sand dune won’t go over well with the player. Nor, in fact, will a large lake of crys-
tal blue water, even if technically clean water could be found in such an environ-
ment. You need to restrict yourself to the palette of your theme—cacti, cow skulls,
the wreck of a long-dead automobile, and endless rolling sand dunes will all work

nicely, however.

Sound and Music

Generally, you will be provided with sound elements by your audio department or
sound artists, or you will be using sounds that shipped with the game you're mak-

ing levels for. You will probably also have access to the sounds and music made for
the other levels in your game, or a pool of common effects that is open to all of the
level designers to help make more atmospheric maps.

The theme of the map should be reflected in what the player hears, just as

much as in what he sees or feels. Avoid overt conflicts in theme, such as using

country music when the player is sneaking through an Aztec religious ceremony.
Avoid using sound effects that evoke hollowness or echo for characters walking
through the corridors of a cruise liner. Try also to avoid well-known stereotypes. If

your level is set on a spaceship, don’t have your doors hiss when they open. Star
Trek has a corner on the “hissing door” market. Go for something meatier instead,
like a whine of electrics, the gurgle of fluid being transferred, or the clank ofratch-
eting gears. Meeting your theme never means you have to panderto stereotypes.

286 Game Level Design

Character Accents and Costume

If your theme has no real basis in reality—if it is some kind of futuristic earth soci-
ety, or set in a completely alien dimension, you can pretty much choose whatever
cultural elements you want for the way your characters talk and what they wear.
Whydo the high-ranking officers of the Empire in Star Wars all speak with highbrow
English accents? Because it’s cool, that’s why. There’s no way we can argue against
that decision because the characters are all part of a completely fictitious universe.

However, if your level for a horror game takes place in a Lovecraftian New Eng-
land townin the turn of the century, having a character talk like a cartoonish Ital-
ian pizza chef will do nothing for your mood. You want mumbling fishermen or
drawling small-town policemen. Thereis a lot of debate about realism and game di-
alogue. Many people feel that if a game is set in a real-life area that speaks a lan-
guage other than English, then the game audio for that level should reflect that, and
use subtitles to translate the speech for the player. On the other hand, many other
designers feel that this is too distracting, and characters from places like Russia,
China, or Morocco should speak in an accented form of whatever language the
game is aimed for. So for a game released in the U.S., all the characters would speak
English, but using the accents of where they are meantto be, allowing the player to
hear the dialogue without reading titles, but also feel more immersed in the culture
of where the level is set.

Either option is valid, and in general, you won’t have much control over the
specifics of who does the voice acting for your level. But you can try to make sure that
you don’t end up with dialogue for your map that doesn’t fit at all. Make sure your
producer orcreative director clearly understands the theme of your map so they can
plan to work with the voice actors in achieving an appropriate characterization.

Lighting

Outdoor lighting differs by location, weather, time of day, and season. Indoor light-
ing is affected by light source, temperature, the amount of dust or moisture in the
area, or the surfaces of the space (painted, concrete, natural rock, wood or rusty
metal?). We talked at length about contextual lighting in the previous chapter, but
the sermon here is the same. Make sure your lighting sources are continuous with
your level’s theme. Don’t use halogen light fixtures in your 13th-century cathedral.
Open-flamed torches in wall sconces look good against wood or brick, but they will
look outof place against metal walls not only because a metal wall covering suggests
a fairly modern building, but also because the player is simply used to connecting
torches to medieval or pre-industrial locations. Candle flames won’t stay lit in ex-
posed conditions outdoors, unless the player can safely assume they are magical, or
in someway not normal candles. Let your instincts and research guide you in plac-
ing proper lighting elements.

Building the Level Part 3: Theme, Investment, Atmosphere

~~
287

Puzzle Components

Often, you will have moving elements and pieces to puzzles that need to show re-
spect for the level theme. For instance, cogs and clockwork tend to work in indoor
areas, even areas where one might not traditionally expect it. An Incan temple or a
Tibetan fortress, for example, can easily support a puzzle where the player has to
jam the workings of a complex mechanical machine. On the other hand, in a fu-
turistic setting like a battle cruiser, having mechanical puzzle elements will look out
of place. Better to represent the same puzzle as hacking a computer terminal or try-
ing to short the power on a panel full of colored, glowing cables.

SIDEBAR

While working on the Harry Potter series of games, we found that level de-
signers were often tempted to create very “realistic” puzzles using mechanical
pieces or moving elements that were suspended by chains, posts, and so forth.
In keeping with the theme (a magical school for young wizards and witches),
we had to keep reminding ourselves that the puzzles didn’t need explanation.
In fact, we could have floating bridges, magically activated stairs that slid out
of walls, or floors that simply fell away to nothing, because the player was ex-
pecting supernatural encounters and things that couldn’t be explained easily.
Oddly, despite having license to do whatever we wanted,it was a constant bat-
tle to not make rational obstacles and encounters. If your level's themeis a
fantasy, be prepared to try to push back your natural need for rational spaces
and structurally realistic encounters!

Al Behavior

The way your characters and enemies behave should be determined in part by
theme. SWAT teams fight in tight, coordinated units. Militia units tend to be more
disorganized and proneto flee. An experienced pilot may not attack an enemy he
knows he cannot win against, but in a WWII flight simulator you would expect a
Japanese fighter pilot to be a fierce opponent, no matter what he is up against. When

you are choosing or scripting the behavior for the NPCs in your map, think about
how it will affect the theme, and the player’s sense of belief. Don’t have your elite
troops fleeing as soon as they get hit by the player, and likewise, don’t have civilians
calmly wait on street corners when giant robots are attacking New York City. Almost

every level has Al of some type, and it is a big part of what gives your level flavor, so
use it wisely and haveit fit the theme of your map, even if it isn’t interacting with the

288 Game Level Design

player. Have your Egyptian priests light fires in the temple. Or if your theme is
“Cleara rebel base located in a South American swamp,” have the patrolling NPCs
mimic human behavior by walking around puddles and pools, and stopping and
using their flashlights to scan the undergrowth when they hear branches breaking
around them. Have them swat at giant mosquitoes landing on their arms and necks,
and give the player the feeling he’s watching someone traverse a real patch of jungle.
We'll examine this later as “life beyond purpose” for making the player believe that
an NPC is a more complex individual rather than just a simple Al routine.

Weapons and Items

This oneis pretty obvious. Roman legionnaires didn’t use machine guns. Aliens
tend to shun cleavers (unless they're all out of laser cannon ammo) and flint knives.
Use your brain and choose an appropriate metaphor for your weapons and game-
play items. The Ancient Celts may not have had medical kits, but they had common
plants they used for healing injuries. A great example of a thematic health item can
be found in Max Payne, where the player finds bottles of painkillers to restore lost
health points in relatively appropriate areas of the levels—bathrooms, locker
rooms, kitchen cabinets, and so on. Ifyour themeis a “steampunk” fusion of Mod-
ern and Industrial Age, maybe your weapons will be mechanical, rapid-firing flint-
lock pistols, and powerups are special science books that can be found on desks,
shelves, cabinets, and podiums. There’s almost always an appropriate thematic
metaphor for gameplay items that will fit your level, if you think hard enough.

PLAYER INVESTMENT—BELIEVABILITY AND CONSISTENCY

Chapter 1 described level designers as responsible for the illusion of reality in lev-
els. This can seem like a tall order to new level designers. How will the players truly
believe that they are in a real space when they are always, to some degree, aware of
beingin their living room holding a controller and simply watching events play out
on TV? Well, really it’s no different than someone getting “lost” in a book or at a
movie theatre and forgetting where heis in the real world. They are invested in the
experience, and the events unfolding before them. Luckily for you, the level de-
signer, games are capable of much more intense forms of investment because the
player isn’t simply watching a predetermined series of outcomes. Your players have
real-seeming choices and goals in the game that only they can accomplish. People’s
(simulated) lives or world events hang on their actions, and the plot doesn’t move
forward until the player wantsit to. This experience is from a combination of all the
games parts—the script, the game design, the code, and the art. However, to keep
the player invested, your responsibility as a level designer is to keep the player be-
lieving in whathe is seeing. This doesn’t mean you need to create a world so de-

Building the Level Part 3: Theme, Investment, Atmosphere

~~
289

tailed that the player can’t help but feel immersed and sucked in—far from it. Try-
ing to go that route will only lead to failure—there’s no way you can ever build a
level that is on par with the real-world in choices or level of detail. However, you
have the unique powerto capture your audience just as intensely as any other form
of entertainment.

Thisis believability, the process of making your audience believe in the experi-
ence you provide. Stage magicians have been doing this for centuries. When your
girlfriend goes up on stage and gets sawn in half at a magic show, you know it isn’t
real, but it doesn’t stop you from feeling anticipation, fear, excitement, and finally
relief when she steps out of the magician’s box unharmed. The art of stage magic
has perfected the art of believability.

You can use your own sort of magic when you build levels. The main way to do
this is keeping theillusion of reality consistent. Don’t give your player a chance to
question the validity of the environment he is moving through. The more you can
give a reason for things to exist—or notto exist—in your map, the better. Follow-
ing are some techniques you can use for consistency.

Provide Real-Life Services

Is your map set in a restaurant? If so, it should include areas and services that the
player could reasonably expect from a restaurant in reallife. It should have a
kitchen, or at least indicate that there is a kitchen that the player can’t access for

some reason. It should have restrooms, with toilets, sinks, and hand driers inside.
It should have areas to store dishes and cutlery and preparation machinery, and the
people inside should beeither customers or restaurant staff. All these things will be
what the player will expect to find. You don’t need all them to create a realistic en-
vironment, but the less you have the more it will be obvious that this is simply a

generic environment that has been half-heartedly dressed up as something like a
cafeteria. The player may not consciously miss seeing bathrooms in environments
that might have them in reallife, but having them, and making them open for the
player to enter and confirm that they exist, will create a much more comfortable
and consistent feeling of an actual restaurant. Bathrooms, kitchens, break rooms,
and lounges, in fact, are all great waysto give a space a “human” dimension. Almost

every building has some form of restroom or facilities in or nearto it for the peo-
ple who live or work there. It might not be the most glamorous room you build, but
the benefits of a well-built bathroom in your map are appreciable.

Give Your NPCs Life Beyond Their Purpose

How many times have you waited and watched an enemy character simply sitting
in a chair, not moving more than the slow up and down motion that indicates
breathing in a game character? How often have you seen an NPC pass by a televi-
sion set on patrol without even glancing at it? One way you can create much more

290 Game Level Design

believable world in your levelis to give life to your characters. Make them feel like
real people, that there are actual minds behind their movements and actions when
they are not simply shooting or fleeing from the player.

SIDEBAR

In Splinter Cell, the player is meant to sneak through the maps without being
seen much. This means that the NPCs spend a lot of their time doing rela-
tively mundane things, especially those characters that aren’t armed and sim-
ply walk the corridors of a map acting as simple moving obstacles that the
player would need to avoid or risk alerting. To make sure the character
seemed more realistic, I tried to include elements in my maps that would
allow the NPCs to interact with the environment, or at least have something
that would break up very obviously looping paths. Vending machines are
great for this, especially if you can get your animatorsto provide animations
that support an NPC using them. In one of my levels for the game I was able
to have an opponent walk up to a drink machine, insert some money, wait a
few seconds, and then begin pounding on the front of the machine when he
realizes that it took his dollar. Players can relate to this sort of scene—it adds
humanity to the denizens of the level.

Simple, real-life acts occur around us all the time. You might have a character
stop and look at a hat in the window of a clothing store as you follow him. You
might have a jeep unit guarding a resource on the map, and every so often have an-
other jeep drive up, and thefirst one drive away, giving the player the impression
that they were taking shifts. It doesn’t matterif the player never sees it—those that
do will feel a great deal more immersion in the environment, which is wortha lit-
tle of your timeto set it up.

Don’t Mistake Realism for Immersion

Game levels rely on illusion. When a levelis set in an oil refinery, the whole com-
plex is not built downto the last closet. The level provides the areas that the player
needs to access to further the story line or meet his objectives, with a few side areas
or less relevant areas often thrown in for the sake of making the level look like a big-
ger environment thanit really is. The reason for this is simple—it would be lunacy
to try to create an entire building’s worth of space if the player just needs to get
from the basement to the roof. That's like building a car every time you needed to
drive to the grocery store—it’s simply not worth the effort.

Building the Level Part 3: Theme, Investment, Atmosphere

~~
291

However, the temptation is always there when building a level. Putting a blank
doorway in an office building can sometimes feel like cheating the player. It may
seem like a trivial thing to simply put a small room behind the door with a desk and
a chair, just in case the player decides to open the door and go in. What's the prob-
lem with this? Well, there are a number of problems:

Weakening thecritical path
Causing render bloat
Wasting scheduled time
Confusing the player

EEEE

Weakening the Critical Path

Levels are generally linear, if not spatially, at least in the way the player needs to
complete certain tasks one after the other so he can progress or finish the mission.
This is often referred to as the critical path—the route through the level that the
player needs to take for success. Part of the level designer’s job is to lead the player
through the environment, making sure he does not get distracted so much that he
wanders off the critical path and has trouble getting back on it. By including too
many secondary areas purely for the sake of making a more real-seeming level, you
risk diverting the player off the path and potentially causing frustration once he gets
to the end, or explores the environment and finds nothing worth having gone there
for. Unless your game allows you to place reward items in every office, you should
consider using fake doors to line corridors and give a sense of many more rooms
than there actually are to explore and avoid feeling like you have to create them all

as explorable areas.

Causing Render Bloat

Say you build an entire factory for your map—every office, every machine room,
every toilet stall and broom closet. Chances are the player won’t have the time or
patience to see it all—but the engine will. The engine will need to render everything
you add to the environment, and you will need to try to optimize the entire thing
in defense. This is render bloat—causing the engine to render things needlessly and
risking performance problems by including more data than it can handle at once.

Wasting Scheduled Time

When your producer is setting up your schedule for building a level, he isn’t ex-
pecting you to build a 100% accurately modeled space. Game development is a race
against the clock, and unnecessary areas of the map take time and resources to cre-
ate but don’t add anything to the critical path. If you are found to be wasting time
building superfluous areas, structures, or paths, you might be putting your schedule

292 Game Level Design

in jeopardy. You can only build so much in a reasonable amount of time. Concen-
trate on getting the vital spaces built, and return to creating additionalareasif time
permits once your scheduled tasks are complete.

Confusing the Player
Say the player has been walking through a level set in a hospital. As he moves
through thefirst floor, he finds that each door opensto reveal something beyond—
operating rooms, offices, wards, and so forth. All are modeled completely, and the
player stops to explore each one in case there is a clue, or a pickup lying around
somewhere. As he moves upstairs, there is a similar layout, but now none of the
doors will open. Are they all locked? Are some of them open? Whereis the key?
Checking each one reveals that it is nothing more than blank image of a door,
rather than a moving piece of geometry. Actually, the map’s creator simply ran out
of time and wasn’t able to give the second floor the kind of attention he gave the
first. The player doesn’t know this, however, and will simply be confused by the sit-
uation. Players are used to doors opening when they lead somewhere useful, or for
a reason. Going against this convention can prove confusing, or worse, extremely
frustrating to the average player. Simply creating some explorable spaces in one
area but not in another is even more unbalancing. Be consistent with the reality of
your level and make things ergonomic for your player. Avoid creating too many
areas that are irrelevant to the player, that confuse the critical path, or that will
waste time you will need later for an important part of the map.

Balance realism versus practicality when creating, building, and decorating.
Naturally you want to make your space seem like it could be real, or to have a sense
of purpose and function beyond what the player might immediately have access to.
However, a hyper-realistic map isn’t always going to be fun to play, whereas a fun
map can always be made more realistic.

Directing the Player with Consistent Clues

Players don’t want to be told how to play a game. They play because they want to
be in control and make their own decisions. Itis still important for a level designer
to lead a player through an environment, using hints and prompts that allow the
player to make informed choices without feeling like he is on the designer’s leash
being led to each item of interest. Some of these clues can simply work by tapping
into a player’s own brain, by using elements in a scene that will attract attention,
like using subtle lights to highlight important items in a dark a room (a ray of light
from an overhead window being cast onto a particular row of booksin a case for ex-
ample). These techniques are often used in movies, in books, or in paintings to
draw the audience to certain conclusions or part of the framed image.

Building the Level Part 3: Theme, Investment, Atmosphere

~~
293

In games, a technique used frequently to let a player know if something is
worth pursuing is to develop a consistent difference between how elements of in-
terest and things that are simply props or static decorations are represented. Take
the case of doors, which, as we explored in the previous section, can often present
a problem if the player isn’t sure it’s a real door worth trying to open or not. It’s best
to teach the audience early that a door that cannot be opened has a simple image of
a door handle, while a door that the player can open—at some stage during the
level—is represented by a more fully modeled door with a 3D handle. The differ-
ence is subtle, butif it is consistent, then the player can begin to see quickly while
playing which doors need to be tried and which doors can be ignored. The system
could be simply that metal doors, for instance, are always locked, and doors with
other texture types have space behind them to explore. Many games use this clue
system for doors. Consistency, not the actual difference,is the key to informing the
player about what is “live”in the level and whatis not.

ATMOSPHERE

When someone describes the atmosphere of a level they have played, they are really
talking about how theyfelt while playing it. Part of this feeling comes from how im-
mersed in the environment the players were—how real it seemed, how much the
level reacted in ways they expected and how many things they were able to do with-
out being reminded they were just playing a game. The other part comes from the

way in which the development team was able to create emotions in the player by
using dramatic elements such as sound, light, architecture, and textures.

Together these two experiences create atmosphere, and mood,in a level and
make something that isn’t just a series of encounters with NPCs or room after
room of puzzles, but an actual living environment where the player feels fear at
whatis growling in the next room, elation at moving a bridge into place, anxiety at
riding a rickety gondola over a boiling, lava-filled crater. Atmosphere is the glue
that binds the fun of the level’s gameplay and the work of the art and programming
team into an experience, allowing the designer to tell a story about the level through
visual elements.

Letting the Player's Imagination Do the Work

One thing to note is that atmosphere isn’t about jamming as much cool stuff in

your level as possible. In fact, very often atmosphere can be created by the absence
of things. For instance, in a game where the player is used to hearing the moans and

groans of monsters,a level where suddenly there is no noise at all, except maybe the

very low, very faint sound ofa ventilation fan high above—will make the player feel
that something is wrong, that something bad is going to happen,or that something

294 Game Level Design

is waiting for him. Let the player do some of the hard work and suggest things in
your level. Suggestion can be made as audio or visual clues—a bloody footprint, the
sound of tapping behind a locked door, or simply the sudden silence in what should
be a noisy, crowded environment. These all suggest certain themesor situations to
the player. Even if they aren’t the thoughts you had intended the player to have,
they are still enjoying your level on an atmospheric level. Let’s look more at the
kinds of emotions and reactions over which level designers have control.

Fear and Anxiety
Fearis a fairly easy emotion to evoke in the player. In Resident Evil, a game all about
scaring the player, early in the first level the player enters a well-lit corridor with
nothing out of the ordinary. With no warning, however, two zombie hounds burst
through a window behind the player character as she passes by it, which is a uni-
versally recognized “heart stopping” momentin game history. Fear can be created
by any kind of drastic, sudden, tipping of the balance against the player. Having all
the lights go out, having an elevator drop without warning, or the ceiling begin to
collapse—these are all proven methods of scaring the audience, pioneered by Hol-
lywood horror movies decades ago.

Anxiety, on the other hand, is a more subtle and complex emotion that needs to
be built over time. The player also needs to feel some attachment to his character for
anxiety to take root. If the main character is disposable, what’s the problem with
having him die? Conversely, the more time and effort the player has put into evolv-

ing and progressing his character through the game, the fewer chances he will want
to take with a dangerous situation. Anxiety, then, is implanting the idea into a
player’s mind that his character may be about to run into some kind of lethal situa-
tion. Think about the opening scene of the movie Raiders of the Lost Ark, where In-
diana Jones is swapping a bag of sand for a priceless gold idol that is resting on a
pillar in a trap-infested temple —the slow movementsin the scene, the music, and
the close camera angles all create a stressful, anxious feeling in the audience. There
are many great waysfor this in games, and often audio comesto the fore in levels
where the player is meant to feel nervous or anxious. System Shock 2 used ambient
effects and subtle incidental music to create an almost tangible feeling of dread.
Slow, eerie music, the silence of a shopping mall that seems like a massacre has taken
place, and the occasional announcements of an insane computerfor a crew that has
all been killed—these are ingredients for a high level of anxiety in a level. The longer
the level designer can stretch the feeling that something bad is about to happen,
without having it broken, the strongerit will become. Eventually it will become bor-
ing, however, and needs to be resolved in an actual encounter. No one single emo-
tion can last for the whole level. Going back to the concept of rhythm, as a level
designer you needto create a roller coaster of emotions with your level’s atmosphere,
balancing drawn-out emotions with sudden changes in emotional tempo.

Building the Level Part 3: Theme, Investment, Atmosphere

~~
295

Revelation, Realization, and Wonderment
Game levels frequently can be predictable. The player has already guessed the crit-
ical plot-twist or secret long before he encountersit in the map, and when he does,
it’s more of a reason to wonder why he paid good money for the game instead of
being a jaw-dropping moment of enlightenment.

The emotion of wonderment is tied closely to the “Wow factor” in levels. Al-

though the player may be stunned by a revelation that a friendly character has re-
ally been trying to kill the player, or that the spaceship he has been fighting through
is really just a set on an alien reality-television show, these are more often related to
the game’s script or narrative. To create wonderment through atmosphere, you
need to do so using the tools at your disposal as a level designer. When the player
emerges from a dark and cramped prison interior into a lush, sunlit valley, or when
a growling monster the player just killed turns to the main character and recites a
Shakespearean sonnet with his last breath, that will cause the player to wonder ifit
wasreally a monster he just struck down. As mentioned at the start of this chapter,
using dissonance in a carefully controlled situation often creates wonderment. At
the end of Half-Life, the player sees things in the levels that make him wonder if all
the fighting he has done up to that point has actually furthered the cause of the peo-
ple he thought he had been fighting against—the remains of a human soldier on an
alien world, for example, is a powerful form of realization or revelation caused by
seeing dissonant elements in a map. Surprising the player with situations he was not
expecting is the key to wonderment. When the player realizes that what at first
glance seemed like a simple puzzle turns out to be the critical element in the level—
fixing a broken control panel on a derelict spaceship and suddenly having all the
power return to it, lights flaring up all over the craft with the sound of the engines
firing up—thatis a key emotion a level designer has the powerto create through at-
mospheric elements.

Relief, Satisfaction, and Joy

A controlled atmosphere can also be used to create many positive and fulfilling feel-
ings. This feeling naturally comes naturally when the player completes a difficult
encounter or puzzle, or simply finds a well-hidden exit. Timed events can amplify
this sort ofrelief by increasing the stakes for the player.

SIDEBAR

Say you have a room that the player falls into. It is a wide circular room with
a single door to exit and the flooris covered with a foot of water. When the
player initially falls in, he suffers some degree of panic—what is this place,

296 Game Level Design

how does he get out? Finding the door, the player quickly enjoys a small de-
gree of relief at escaping whatfirst appeared to be a dangerous situation.

If you had created a problem that needed to be solved before the door
opened, say a logic puzzle in which an exposed panel in the door reveals sev-
eral terminals that need to be connected by the correct wires. Now, complet-
ing the puzzle and opening the door to freedom allows the player to feel
satisfaction—he didn’t simply activate the door and walk through, he earned
his freedom byrising to the challenge and beating the internal mechanism.

However, if you had introduced a timed element, such as an environ-
mental danger like outflow pipes coming on and flooding the chamber, then
you have introduced a strong element of urgency and fear into the encounter.

The player is now racing against the clock, trying different wires and con-
necting them to terminals. The threat of drowning will probably affect his de-
cision making and each mistake or disconnection will be a painful error.
Eventually, the door engages and the player spills out beyond with the flood-
water. What is he experiencing now? Satisfaction and relief, which together
form a sense of joy at beating the odds and not succumbing to the trap.

Relief is when the player drops the controller and breathes a long sigh, as adren-
aline pumps through his body. Joy is when he drops the controller and dances
around the room, shouting. If this seems impossible for a simple video game to
produce, consider the many games that rely on this emotion as reward for playing
well. Racing games such as Mario Kart rely heavily on the player crossing the finish
line just ahead of his opponents, coming first by a nose after three grueling give-
and-take laps. This needs the Al behind the other racers to be good, but not so good
that the player cannot win against them. Well-executed plays and game wins in
sports titles have the same effect on players. These emotions are all about build up,
risk, and ultimately, the feeling of beating the odds. Part of this is the player’s in-
vestment in the game or game characters, and part ofit is creating a sufficient illu-
sion of danger.

Loss and Regret

Earlier in the chapter we examined the idea of the player being able to invest in the
game by belief in the surroundings and seeing the result of hard work and long
hours in the player character or units.

Building the Level Part 3: Theme, Investment, Atmosphere 297

Through the introduction ofplot elements, we can also havethe player become
attached to other aspects of the game—characters, weapons, vehicles, or what have
you. When a player is attached to something, he is then capable of feeling loss whenthat elements is removed, destroyed, or perceived to no longer be accessible to the
‘player. A common example isa trusty sidekick NPC that the player relies on in the
game that is suddenly killed with the player being helpless to stop it. Or the playerreaches a point in the game where all of his hard-earned weapons are removed, andhe starts the next level with nothing but a piece of pipe as a weapon. These are clas-
sic, if not overused, design elements engineered to create a sense of loss in the
player. The former example is simply borrowed from Hollywood movies, wherelovable sidekicks or secondary characters die needlessly by the hour. The latter ex-ample, however, is more of a game convention, because it directly affects the
player’s ability to interact with the game. In a shooter, the main waya player can ex-
press himself or interact with the world is through his weapons. Take those away,and the lossis tangible. Both are valid, but take more than clever level design toachieve. Working with the game’s scriptwriter and design lead, you can, plan care-fully crafted encounters that will strengthen the player’s perceived relationship withcertain game characters, and then the final showdown event (or events) in a level
where the loss will occur. These events should not be cutscenes, if possible. Simplywatching a friend get gunned down by a gang of outlaws in a pre-rendered movieis much less compelling than seeing an ally go under as you race to his or her aid,
ultimately in vain. Even better, create encounters where the player can save an ally.
Branching narratives (where the game’s story can go down different paths based onthe actions ofthe player) and emergent gameplay is improving to support this sort

of life-or-death decision by the player. If there’s no real connection between the
player and an NPC, there may be little incentive to save the NPC from harm. Onthe other hand, in the same gamea different player may seek to protect the sameNPC at all costs.

Silent Hill 3 is a great example of player attachment (and loss, later in the game)using branching narrative. In this game, the player meets a mysterious woman,Maria, who is both appealing and yet incredibly acerbic at times. Soon after, the
player finds he must protect her from the creatures prowling the town, and the gamenot only notices how well the player protects Maria but also picks an ending based
on that protection. The player’s own sense of attachment and fear of losing Maria (or
not, as the case may be) as a fellow living being in an otherwise lonely world, deter-mines the final outcome, but the game never forces the player either way.Relative to atmosphere, it is quite possible to keep the threat of loss current tothe player by making sure the environment is dangerous in a waythatis threaten-
ing to what the player is trying to protect.

298 Game Level Design

Atmospheric Audio

Our ability to hearis actually much more powerful than our ability to see. This
means that players will often notice subtle audio hints more often than subtle visual
ones. For one thing, human sight is directional—it needs to be focused on some-
thing to registerit. The ears pick up sound from all around, however, and the brain
can focus on and filter out a large number of sounds at once.

All ofthisis really to say that audio plays a major part in creating atmosphere
in games. As you seek to infuse flavor and ambiance in your map, add layers of
sound. Music can enhance almost any mood ifit is consistent with the encounter
or on-screen situation. It is useful to watch different types of movies and analyze
how the music is used to create emotions and give the viewer a better feeling of the
environment in the scene without actually being there. A musical score is such a
powerful stimulant for the imagination, and yet viewers rarely actually notice the
music—it just becomes part of the scene. Remember that a player probably won’t
have time to stop and admire the game’s musical score, it will go directly into his
brain without his realizing it, making it a useful and elegant way of controlling the
atmosphere.

Similar are ambient sound effects. In a dark cave level, a few drip-drip-drip sound
effects playing in the darkness will suggest a huge amount of subconscious informa-
tion to the players. It suggests water nearby; an echo suggests the cave system is huge
and hollow;it might subtly suggest footsteps; or that whatis dripping isn’t water, but
maybe something far less wholesome... .

When building, make sure your sound assets are up to date, and don’t be afraid
to approach the sound designers when a brilliant idea for an atmospheric effect hits
you—that’s whatthey are there for, after all.

SUMMARY

The need for eye-popping graphics and in-your-face gameplayis growing in games,
with each new generation trying to differentiate itself from an increasing number of
competing titles. Don’t necessarily let this steer how you will bring the player in and
keep him interested in your levels. More subtle techniques need to be employed—
the level designer needs to think ofall the little details that will make players of the
game feel immersed in the map and that the game world is actually much bigger
than the level they are restricted to. Atmosphere, believability, consistency, and
keeping a theme running through the level will all help enfold the player in realism
and grounded in whatever rules the designer sets.

Building the Level Part 3: Theme, Investment, Atmosphere

~~
299

AN INTERVIEW WITH RICH CARLSON OF DIGITAL EEL

Rich, you've been involved in designing levels for quite a while now, can you tell

me a little bit about your career and how you came to be a designer?

A long time ago in a galaxy far, far away, a nasty hard drive crash put me out
of the music business for a few months. Suddenly I had more time on my
hands than usual. While I was recovering work and trying to hustle new music
gigs, a friend showed me Doom and gave me a freeware copy of WadEd, a
.wadfile editor. He said something like “You run D&D games. You might like
to make levels.” I was skeptical because I wasn’t into games with guns, but the
engine was so cool and whoa, the sound was in stereo. You mean, I can add

my own midi files and SFX too? Neato.. .

Turned out he was right. I ended up making a couple of dozen free levels
for Doom, Doom 2, Heretic, Hexen, and Quake right away,like within a period
of six, maybe eight, months. I really enjoyed that time.It felt like rock and roll
did in the ’70s. LAN parties werejust starting to happen. There was this funky
community, an undeniable coolness aboutit, and the technology was hot.
You're right where you want to be.

Anyway, Quake was the game that got me myfirst legitimate job in the

game industry. I'll always credit Quake itself before any other factor. Steve
Rescoe (id), John “DrSleep” Anderson (not involved with the game industry
anymore), and I had been trading Quake levels and emails via this wonderful
new thing called the “Internet.” (The Doom community started out on BBS so
this was a pretty big deal.) By the way, I was the newbie always looking for
criticism and Steve and DrSleep werereally mentors to me.

Meanwhile, John Romero and his pals were setting up Ion Storm al-
though I wasn’t really aware ofthis at the time, or interested the game biz at
all. It was about levels, not getting a job. DrSleep had Id connections having
worked on the “Master Levels” add-on for Doom. Soon, Romero got Sleep on
board and they started looking at user-created levels to find new bloodto staff

up lon’s two brand new level design departments.
What it boiled down to was that if Romero liked your levels, you were

pretty much in. Steve and I got offers, which was totally amazing and we both
eagerly accepted. And, you know, quite a few level designers working in the
industry now got their first jobs during that 97-98 boom time.

By the way, my lon interview consisted of a five-minute long-distance call
from John Romero.

—

300 Game Level Design

Do you think different game genres yield very different level requirements, or is
there a fundamental set of rules that all levels share?

The basics, things like paying attentionto details or understanding the tools
and operating them correctly, are always pretty much the same, but each
genre offers unique challenges and surprises.

Actually, with enough research andalittle careful thought it isn’t too hard
to cop a genre, broadly speaking. What's tougher is handling each “flavor”
within a given genre. That’s what separates the men from the boys.Is it semi-
serious science fiction like Star Trek? Is it geek-funny, like Hitchhiker's Guide to
the Galaxy? Is it kid-funny like Jimmy Neutron? Isit fantasy like Star Wars?

Understanding flavors, which requires a broad familiarity with a given
genre, and being versatile enough to execute them has got to be one ofthe
most challenging aspects of level design, especially in these days of licenses
and mass market (as opposed to niche) games.
Could you elaborate on the concept of “flavors” and how level designers can go
about absorbing them (and understanding them) into the critical-thinking areas
of their brains?

I use “flavors” because of my aversion to technical sounding words. “Sub-
genre” isn’t quite right. “Variations on a theme” might be closer. Varieties of
ice cream. Varieties of rock ‘n’ roll. Like, punk isn’t country rock even though
they use the same chords. :

If you play in a variety band or a wedding band, you know dancers want
to hear the songs “just like on the record.” If you can’t pull this off, you won’t
please them, you won’t get rehired, and your group will go broke. You ab-
solutely have to know all ofthe flavors of “rock ‘n’ roll,” and the flavors of
other categories too. Quite a chore. (Fortunately, if you really like music, get-
ting there is half of the fun.)

If you understand the flavor you stand a better chance of being able to ex-
ecute or recreate the flavor authentically when asked to do so. The more flavors
you understand, the more styles (hey, style’s a good wordfor this) you can pull
off. Studios need versatile level artists who can switch flavors without too much
trouble to suit the style (yeah,I like that better) of each game that comes along.

How do you get this? Wow. You spend a long time collecting informa-
tion, details, trivia. Ifyou want to be a jazz guitar soloist, you listen to jazz gui-
tar records and cop everything you hear, and this takes years. You can’t
understand punk, country rock, art rock, heavy metal, folk rock, jazz rock,
and grunge by next week. There is no crash course. You have to pick it up bit
by bit, and you have to take the time to absorbit.

dy

Building the Level Part 3: Theme, Investment, Atmosphere

~~
301

So hopefully you find a nice broad category or two that you like, like sci-
ence fiction. You decide you want to work on science fiction games. Why? Be-
cause you always liked science fiction. You are insatiably curious aboutit. It
entertains you. You care aboutit. You know you do because years have now
gone by, and you have never stopped being surprised byit.

Even if you don’t like Flash Gordon or Dune or Doctor Who, certain as-
pects ofit, you can appreciate them all because they’re “in the realm” of your
interest. And meanwhile, you're absorbing all of the juicy details you can.

If you don’t come to the table with a lot of background like this in a cou-
ple of genres, it’s not the end of the world. Most shooters, for example, are
pretty clichéd and their settings, architecture, and encounter types are well
known and relatively easy to emulate. But just as you get cozy, your studio
signs to do a Star Trek game, or a game based on the new Hitchhiker’s Guide
to the Galaxy movie, or maybe something from Pixar or Nickelodeon, yow!,
and you've got a whole different level art style and vibe to deal with.

If you're an empty slate and unprepared/inexperienced, it’s not like you'll
lose your job. There’s a lot of support on a team and lots ofdifferent things for
a level artist to do. But, you may not get very close to being involved with core
level design issues. The folks with the most familiarity with the particularfla-
vor of the game and its presentation will be taking care ofthat.
In this book, I talk about the importance ofplanning and documenting a level design
before building anything. Can you describeto the readers howyou go about design-
ing your level and the kinds of techniques you use to turn ideas into actual gameplay?

Graph paper and pencil. I may draw a Zork map (a flow chart with movement
directions) or I might draw an area-ipa layout to scale but it all starts with
a good old #2 pencil.

Since a story obviously has a beginning, a middle, and an end, and since
I think ofeach level as kind of a short story, I try to make sure that I have those
three plot points covered first. Start with a bang or begin with a dramatic or
mysterious event. Put a decisive event or a twist in the middle. End with a
bang,a cliffhanger, a cool transition, or something like that.

Then I try to think of a couple of fun encountersto put in between those
three points. If you're working from a design document, these might be the
opportunities when you can wing it and stretch outa little.

Meanwhile you're asking other designers and testers if the ideas you've
implemented are interesting and fun to play. You go on feedback and tweak
or replace until the whole thing runs smoothly and satisfyingly (and is chal-
lenging and fun).

y

302 Game Level Design

Where do your encounters come from when you work? Do you keep a
notebook of fun encounters, oris it more of a metal bank? Or do you simply
generate gameplay ideas on the fly as you come across “holes” in your level?

I believe in chance, trusting your subconscious, and having tricks up your
sleeve.

Chanceis easy. Keep randomly smacking different things together and
something cool will eventually occur, assuming you know a good thing when
you seeit.

Having faith that your subconscious will provide good ideas from time to
time seems like betting on chance but, as a friend of mine once said, it’s amaz-
ing what your brain can do when you're not looking.

A bag of tricks is an absolute necessity. It’s full of all ofyour favorite ideas
that you have collected and saved, that have, to the best of your knowledge,
never been done before. It’s also your chops, the serious skills you possess.
Very important because (a) who you get to work with depends on your chops,
and (b) if you don’t have any chops, “you can’t play.”

Ofyour many levels, what stands out as the one you are most proud of, and why?
What makesit different, specifically?

There are a couple of free levels I've made, or collaborated on, for the various
Doom and Quake engine games that I think represent my best work. The Doom
That Came to Dunwich, likka Keranen’s Lovecraft-themed Quake 3 Arena
level—he allowed me to add a couple of rooms and “co-direct.” “Dungeons of
the Doomed” for Doom 2. “Oblivion” and “Faneof the Diabolist” for Quake.
And then there’s the chicken level I made for Heretic but we won’t go into that.

I also made a few Morrowind mods that I'm happy with, particularly
“Three Shades of Darkness.” You can find all of these levels on the net in the
usual places.

“Oblivion” has kind of an interesting story (pictures too) at http://
digitaleel.com/blog/ob.htm.

[like these the best, even overthe professional level work I have done, be-
cause each one has features that are unique or personally interesting to me.
“Dunwich” has Dali, Escher, and Ernst paintings hanging on the walls of a se-
cret underground sanctum. “Dungeons” is an immense D&D-styled dungeon
fortress layout; it’s a dungeon crawl for Doom 2. “Oblivion”is all about small
Roger Dean-like sky islands floating in a black void. It’s a jump puzzle level
that’s actually fun to play. “Fane of the Diabolist” was the level that got
Romero’s attention at Ion. It has some really weird stuffin it, “arty” stuff, a
couple of very obtuse (awful) puzzles and outside areas with uneven “natural”
ground, which was actually kind of an innovation then.

—

Building the Level Part 3: Theme, Investment, Atmosphere

~~
303

“Three Shades” is too complex to talk about here but it’s large—three
very detailed dungeons connected by a story thread from an earlier mod I

made. I created a ton of content and likka modeled and skinned a couple of
nifty new weapons for the mod, including the now infamous Pandemonium
Parade Baton. Throughout these levels, I'd add original art, sound effects,
new writing, and even original music compositions. I put my heart and soul
into them.

I’ve never been happy with a single pro level I've made. They all were
rushed and really suffered for that. Many had to be remade several times due
to lousy, incomplete, or nonexistent game design in the first place. After too
many cooks had their way with them, the finished versions never looked as
good as I knew they could look and never played as well as I knew they could
play. Continuity was missed or ignored. Trendy gimmicks were added to
“spice them up.” Areas were re-lit or re-textured and botched. Jump puzzles

-were added. Switch and floor plate puzzles were added. Etc.
After a couple of yearsof this I got pretty frustrated because I knew that

nobody was ever going to see my best work with that kind of arbitrary atom-
smashing design process going on. Still, I tried to be optimistic. I switched
companies and forged ahead. Three years later, after much more of the same,
I had a revelation about what my role should really be, but I had become very
jaded and I was too burned out to really act on it. That whole wonderful yet
frustrating period of level design was coming to an end for me.

Given current advances not only in rendering and display technology, but also in
processing power and maturity ofgamers, what would you have done differently
ifyou were creating those levels now or in the future?

Free levels? Honestly, nothing except incorporating any new features that
might enhance the level. It’s much more likely that I would just build brand
new levels with new features to experiment with.

Pro levels? I'd try harder to tie Wow! features to Wow! gameplay ele-
ments instead of trying to be so subtle all the time. Every gamer deserves a
clever level with a well thought out and logical underpinning, but what they
really wantis to be entertained!

You know, I don’t really think about gamer maturity because the average
gamer today only knows games from the last couple of years. They haven't
seen a fraction of the cool things computer games can do.

—>

304 Game Level Design

Can you illustrate the major pitfalls that you have overcome in your career, and
those that you still see new generations of level designersfalling into?

Be honest with yourself and identify your real strengths. Then focus on them
and make sure your boss knows what they are.

Although I can usually whip up a fun playable level, my most authentic
abilities are in aesthetic areas, like lighting, accurate and creative texturing,
colors, detail work in general, dressing, artistic composition and balance,
visual continuity, etc. In other words, I should have been working in the art
department.

Bythe time I figured that out, I was already burned out from five years of
full bore heavy crunch dying company level design. And, dang it, I had to stop
doing it for a while.

Any parting words of advice for the up-and-coming generation ofLevel Designers?

If everything is wonky, and you can’t seem to get your level working or play-
ing smoothly, it may simply be suffering from obesity. Flabby levels are easy to
fix though. Highlight generous areas of geometry with impunity and hit delete.
Generally, I think that intense tightly focused short levels are more fun to play
than padded-out long levels. Make more short levels and less long ones.

Maybe that’s just a personal preference.I like short economically written
chapters in novels, and short scenes and quick cuts in movies. I grew up
watching too many Tex Avery and WB cartoons.

Do detailed work and take pride in that but don’t get stuck on one dig
for too long. From the midpoint on, once the level has taken shape, do light
passes and finesse the level a little each time. Ifyou get hung up trying to per-
fect one thing at a time, valuable days will pass, other parts of the level will get
shorted, and you'll probably have to changeit later anyway.

Do you merely get impatient with long levels, or do you think there’s re-
ally a problem out there with too many level designers trying to stretch out the
length oftheir environments too far?

I do get impatient with long levels although there have been exceptions,
like some ofthe mission areas in Thief: The Dark Project which were huge but
also very focused and tactically fascinating. You had to kind of live in them, so
to speak, to survive. But usually it’s the old all-American “big is more” thing.
People think bigger is better, and they become overambitious, until they real-
ize they have to fill even more square footage with interesting details and
things to do. When a level designer chumps this, you know it, players know it,
testers know it, because you end up wandering through large areas with ab-
solutely nothing to do. Yeah,I think this is a fairly common design mistake.

; A Case Study: The CIA Level
from Tom Clancy's Splinter Cell

§ Eby
“aClear Pa

leyDougherty

305

306 Game Level Design

In This Chapter
An Introduction to Splinter Cell
Creating the Level Design Structure
Assembling Reference
The Design Process
Building the CIA from Scratch
The Danger of Unknown Metrics
Shifting Technical Limitations
Reducing the Scope
Cutting Back on Content
Resuming Production
Cleaning Up
Scripting
Tuning
Adjusting the Difficulty
Wrapping Up
Summary

EE

ES

EEEEEEBEEEERER

ters. On one hand, the CIA is an example of how good planning can pay off.
Much of the level was done on paper before the editor was even opened, with

several phases of documentation, sketches, and layouts building to the initial white-
box stage. On the other hand, we didn’t plan for the kind of performance hits we
started to see once the level began to take shape, and so some drastic cuts and op-timizations had to be introduced to makeit perform better on the Xbox.

Te level is chosen as an exampleto illustrate several aspects of previous chap-

AN INTRODUCTION TO SPLINTER CELL

At the beginning of Splinter Cell’s pre-production, there were only a handful of us
designing the game. It wasthe first game Ubisoft produced at the Montreal studio
that would break the tradition of family-oriented and casual games by bringing in
the kinds of things fans of Tom Clancy love from his books—firefights, political in-
trigue, and a strong sense of realism. Because this was new territory to the studio,
we found ourselves laying tracks as we went, and many of our ambitious ideas
about the scope and complexity of the levels were tempered over time as the game
began to gather steam.

A Case Study: The CIA Level from Tom Clancy's Splinter Cell

~~
307

The Team

The level design team consisted of a lead level designer and six level designers, each
responsible for two to three maps oftheir own design. Each designer varied in ex-
perience and background, some of them coming from other projects at Ubisoft,
with the rest hired from the extensive community of Unreal Tournament amateur
map-makers. While we were planning the team, we thought that having seven level
designers might be excessive, but we quickly realized that we had completely un-
derestimated the workload. In the end, an entire section ofthe game,a set offour
levels set in Siberia, was dropped to allow the designers to concentrate on their
otherlevels. Although painful for the people who had put a great deal of work into
their Siberia maps, as we have discussed in previous chapters, the ability to quickly
adapt to change and move on is a necessary quality in level design given how fast
external pressures can build up.

The Pipeline

Splinter Cell was one of two titles at Ubi Montreal being developed with Epic’s (at
the time) cutting-edge Unreal Warfare engine. On previous titles, level designers at
the studio had mocked up levels in 3Ds max, and then handed off the maps to
artists for all the final geometry and beautification. With the new engine, the de-
signers would be responsible not only for the gameplay but also for a good deal of
the final architecture and geometry. Much ofthe decorative work was done in Max
by artists and then imported into the map through the Unreal editor. This method
of producing levels meant setting up a different pipeline for the company. Each
level designer was paired with an artist. Designers would be given the basic infor-
mation for their level—environment, key story points, main objectives, enemy
types, and allowed equipment—and then would build the level on paper them-
selves. The artists working with them would be involved in the construction stage,
providing textures and environmental models to decorate the levels with, including
unique set pieces. Level designers were also responsible for creating scripted events
and in-game cinematics using a custom scripting engine.

CREATING THE LEVEL DESIGN STRUCTURE

All the levels in the game started as long columns of paper tacked onto the walls of
a meeting room—the “war room” technique worked extremely well for us to be
able to break the game into logical chunks and outline the necessary details for each
one. Critical level components were written down on sticky notes and moved
around as we struggled to balance the initial flow of the game. After we were happy

308 Game Level Design

with the level structure, the distribution of items and equipment, environmental
factors, and story elements, all the data was typed into mission abstracts—one for
each level—and these became thestarting point for each level designer creating the
finished design.

Mission 2.1-The CIA

Splinter Cell was designed to pushstealth gameplay as much as possible. Atits in-
ception, the game was designed by a core team offour,all of us big fans of the Thief
series by Looking Glass Studios, and the aim for our design was to take the tightly
focused gameplay of the most successful stealth games currently available and bring
them into a contemporary setting with real-world locations and situations. One of
the highlights of the sneaking gameplay was the Central Intelligence Agency level,
which had the player breaking into one of the most heavily secured installations in
the world and do it without causing a single casualty.

The CIA level was created as part of the first pass of mission abstracts. The ini-
tial level documentation, once it had been written up from a sheaf of paper covered
in scribbled notes and Post-Its, is shown in the sidebar. As you can see, the details
at this stage are slim, and most of the document is just bullet points and one-line
objective summaries.

2.1-CIA HEADQUARTERS, LANGLEY, VA

LEVEL SUMMARY-Find the leak

Someone inside the CIAis leaking information to the Georgians. Fisher must
find the leak so that Third Echelon can follow it toward Kombayn Nikoladze.

Objectives
1. Access the CIA’s internal server. Any information leaving the CIA would

haveleft an imprint on their server. If Fisher can infiltrate the CIA and
access that server, Third Echelon can trace the imprint to its source. (Use
Object)

2. Access Dougherty’s Computer. The computer belonging to a CIA em-
ployee named Mitchell Dougherty is the source of the leak. Fisher
must accessit so that Third Echelon can traceit to the Georgians. (Use
Object)

sy

A Case Study: The CIA Level from Tom Clancy's Splinter Cell 309

3. Kidnap Dougherty. Third Echelon wants Dougherty alive so that he
may be interrogated. We must know whether or not he was con-
sciously giving information to the Georgians. (Find Person)

4. Extract Dougherty. Fisher must carry Dougherty out of the CIA andtoJr. Wilke’s truck. (Extraction)
5. Escort the Truck. Fisher must clear a path for the truck to get out of

ClA headquarters without being detected in a restricted area. (Escort)

CHARACTERS NPCs
Sam Fisher CIA Agents
Irving Lambert CIA Police
Vernon Wilkes, Jr. CIA Technicians
Jack Baxter CIA Bureaucrats
Mitchell Dougherty

ENVIRONMENTS
Autumn in the American South
Night
A storm is brewing above
Sheet lightning, distant thunder

This sidebar is good exampleof a first-draft mission abstract. As scant as the
details are, the skeleton of the level is there, the basic location elements, the must-have game objectives, and the kind of ingredients available. This is just enough of aframework to begin hanging a design from.

From this information, an overview document was formed, using an aerial
photo of the CIA complex found on the Internet, to mark out rough locations the
level would take place in and fleshed out with some text descriptions beneath it.
Often you won't be able to have an actual reference photo for your level, and in
such a case you might need to provide a sketch map or simple diagram to illustrate
the scope and locations ofthe level visually. The overview draft is reproduced in
Figure 12.1 in its original form.

310 Game Level Design

OVERVIEW DRAFT—MISSION 2.1 CIA HEADQUARTERS

io 4

FIGURE 12.1 The CIA complex with rough indications of where the player will go.
©2002-2004 Ubisoft Entertainment. All Rights Reserved. Splinter Cell, Sam Fisher, Ubisoft, the Ubisoft logo,

and the Soldier Icon are trademarks of Ubisoft Entertainment in the U.S. and/or other countries.

Section 1: Entrance and Basement

The player starts in a small wooded area by the main entrance. Low decora-
tive hedging provides shadows for movement, and a lake area provides water
to hide in when K9 patrols get too close. The Main CIA entrance is, obviously,
a bad place for Sam to enter, but it’s doable with enough ammo and a lot of
luck. Instead, Fisher will be informed that 3E is shutting down the A/C system
for a few seconds allowing him to enter the building through the blades of a
large fan. The player can from there use a security corridor to bypass the en-
trance post and get to the main elevator lobby where he can catch a ride to the
basement, and the server room.

—>

A Case Study: The CIA Level from Tom Clancy's Splinter Cell

~~
311

The basement is alternately well lit in busy areas, and dark in the areas that
are shut down or inactive at night. Some scripted events such as people cross-
ing Sam’s paths, as well as patrols and such will keep the player on his toes.

The gameplayin this section is mostly stealth and timing based. There will
be some small shortcuts, mainly through a cramped cable run branching from
the backup battery room, that will make the player’s life easier if he finds
them. Once the player enters the server room and does his thing, he’ll make
his way further into the basement where he’ll reach a small lobby and head upstairs to the courtyard.

Section 2: Courtyard and Cafeteria

The courtyard is a wide paved area in a quadrangle between looming CIA of-
fice blocks. Across a small wooded areais the cafeteria, a modern three-arched
tent-like structure that contains the main dining room, cafeteria, and kitchens.
The player will need to work thoughthis structure to access the paper disposal
complex behind it, where a disposal tube will lead to Dougherty’s office area.

The gameplay here is split indoor/outdoor. There will be activity outside—
a higherstate of security with a patrolcar, and various cops and maintenance
guys walking around. Inside the cafeteria, most of the seating sections are
closed. The kitchens are manned by a skeleton staff catering to the CIA over-
timers working tonight. The paper disposal section will be a loud place, with
some technicians working on machines and such. There will need to be a lot of
vertical components that Sam can use to get up to the level Dougherty is on.
Section 3: Information Retrieval Department
This section will be busy. Some areas will be dark, with motion-sensitive lights.
Lots of locked doors, and offices. Some will be open and there will be a good
dealoff foot traffic, agents and pencil-pushers walking around trying to deal
with the current crisis. One ofthe cooler ideas hereis for Sam to makehis way
through a few sections of tape carousels with robotic arms moving aroundfil-
ing tapes, to get into a sealed off area, Dougherty will need to be followed and
knocked cold when he goes to smoke,If not, the player will need to carry him
to the smoking lounge and out onto the building’s super-structure. Still carry-
ing Dougherty, the player must maneuver across building facades and rooftop
to slide down to where the van is waiting. Physical stealth gameplay rules here.
With the bulky body on his back (alliteration) Sam is unable to fight or use
geometric events to move, and must remain unseen at all times.

—>

312

/7

Game Level Design

Section 4: Clearing the Path

In this section, Sam will need to scout ahead of the van. There will be cameras,

patrols, and a few security stations with. guardsin bulletproof huts where Sam

will need to take them out and switch off the tire-slasher roadblocks that
stand in the van’s way. Lots of stealth and timing. This is still just at concept

stage right now.

Although not always necessary, this sort of overview documents are useful when you're

pitching your design or trying to explain the basic concept to someone else. Even ifyou
don’t ever end up showing it, it can help to write down your vision of the level to solid-

ify it in your own mind. The example in the sidebar might be a little wordier than nec-

essary, but rememberit can often help to painta clear picture in someone else’s head to

use a good description when you don’t have time to make diagrams or track down ex-

tensive photo references.

ASSEMBLING REFERENCE

afp/
NOTE

After a presentation ofthe infant level to the team, and all of the issues at this stage
resolved, the next step was to track down references for the map. Several sources

proved useful for digging up good references. Simply typing “CIA” in Google's

image Web search came up with a variety of images from official and unofficial sites.

Several Internet search engines support image-only queries. Google is a great place to

start looking for references, or even quickly find sites that might contain many relevant

pictures. Just point your browser to http://www.google.com and click on “Images”

abovethe search bar.

We also had access to a few television documentary videos, which provided vi-

sual references for some interesting areas in the complex, as well as a little about how

the facility operated. For instance, one documentary showed document disposal

tubes that employees would use to destroy sensitive documents. These tubes were

used in the original design to allow the player to climb up onto the floor where

Mitch Dougherty worked, though they were removed during production. It was im-

portantto try to find good reference for this level in particular because as far as we

could tell, the Central Intelligence Agency was really just a glorified office building.

A Case Study: The CIA Level from Tom Clancy's Splinter Cell 313

It would be hard to create a rich visual experience, exciting physical gameplay, orintense stealth situations like some of the other maps provided, unless we could jus-tify them with appropriate spaces. In searching, wetried to find as many “cool” lo-cations with atmospheric or gameplay appeal as possible.
Ultimately,the following areas of interest stood out as good strategic additionsto the level design:

Lobby

The lobby in the level (Figure 12.2) is a combination of the old and new entrancesof the actual CIA. We wanted to keep the grandeur of the real-life location—themarble tiles, inset CIA logo, and the exhibits dotted around the room—but makeit more suitable for moving around in shadow. I placed a fictional element in—along glass ceiling to provide an overhead light source, and then created pillars be-neath it to cast pools of shadow the player could move between.

FIGURE 12.2 The CIA lobby. ©2002-2004 ubisoft Entertainment. All Rights Reserved. Splinter Cell, SamFisher, Ubisoft, the Ubisoft logo, and the Soldier Icon are trademarks of Ubisoft Entertainment in the U.S. and/orother countries.

314 Game Level Design

Basement Corridor
We had one rather fuzzy image of a corridor with a curved ceiling and dark panels
on each side with recessed lighting behind them that we took from the TV docu-
mentary. It ended up being used as reference for all the corridors in the CIA base-
ment area where the main server was kept. It was very sci-fi looking, and we
thought it made a nice transition from the “high governmental” style of architec-
ture of the lobby area to a more subdued and clinical look below.It also paid to rep-
resent the popular public image of the CIA as being a high-tech environment rather
then a regular workplace. An early construction is shown in Figure 12.3.

FIGURE 12.3 An eerie basement corridor modeled on actual CIA reference. ©2002-2004
Ubisoft Entertainment. All Rights Reserved. Splinter Cell, Sam Fisher, Ubisoft, the Ubisoft logo, and the Soldier Icon

are trademarks of Ubisoft Entertainment in the U.S. and/or other countries.

A Case Study: The CIA Level from Tom Clancy's Splinter Cell 315

Battery Room

One of our accumulated reference images was an image of the CIA’s rather large
emergency power facility. It had racks and racks of what looked like giant car bat-
teries that would power the vital systems of the agency if the main power sources
were interrupted. This not only seemed like a good visual area to include, we also
thought it would be amusing to add a technician walking through the stacks of bat-
teries trying to count readings and forever having to restart. The tall rows of bat-teries made it possible for the main character to execute a special move where he
would jump up and wedge himself high up between two walls.

Cafeteria

The cafeteria is a large tent-like structure sitting at the center of the campus. It’s quitevisible in aerial photos and has been the backdrop for a number of movie scenes tak-
ing place in the CIA. We thought it would be a significant way to “ground” the play-
ers in the CIA by having them traverse a well-known part of the facility. One of the
best things about using extrinsic knowledge—or knowledge from the real world
outside the game—Tlike landmarksis thatit allows the player’s brainsto feel that the
spaces are more real.

Rooftop Fans

Another external feature is a building shown in aerial photographs behind the cafe-
teria with large vent in the roof. Because the player needed to move an employee
out ofthe complex using the rooftops of the CIA, this seemed like a relevant obsta-
cle they might have to face on their way out. It should be said that we assumed that
these large disks were fans. It was an educated guess on my part, but even if |
guessed incorrectly (and they are actually UFOs) it’s a great example of a simple ref-
erence image inspiring a level design decision—the fans turned out to be a very cool
visual experience in the final level, regardless of whether or not they exist in real life.

THE DESIGN PROCESS

Originally, the map was intended as a four-segment map, but soon after beginningthe design phase, it became clear that the map would really need to be divided into
five sections instead, for convenience and for optimization. The opening part, the
CIA entrance, was split into two separate maps, one for the above-ground portionand one for the underground areas. At this stage, there was enough information to
begin the process of actually designing the level—a time and place, goals and ob-
jectives, a general idea ofthe level flow, and a folder full of reference images. I could
begin to put pen to paper and start sketching outa level layout, starting out with

316 Game Level Design

some loose sketches of a few key environments—the server room, sneaking past a
security station by crouching under the shelf, a room with a turret that the player
would encounterlater in the game. Usually at this stage, as discussed in Chapter 7,
a more abstract flow sketch is recommened: just putting down some gameplay
ideas and key locations and linking them to form a series of events. In this case,
however, I felt I had a strong sense of the level and moved right ahead on the first
pass at a full layout, whichis illustrated in Figure 12.4

Fey7

FIGURE 12.4 The second part of the CIA level, rough layout. ©2002-2004
Ubisoft Entertainment. All Rights Reserved. Splinter Cell, Sam Fisher, Ubisoft, the Ubisoft logo,
and the Soldier Icon are trademarks of Ubisoft Entertainmentin the U.S. and/or other
countries.

A Case Study: The CIA Level from Tom Clancy's Splinter Cell 317

—— Each of the main sections from the draft overview became a layout sketch in this man-
/\ ner. Roughed out in pencil, it’s easy to erase and redraw the level in small sections. TheFy

V first parts that you solidify on paper tend to be the areas that are most delineated by the
level’s needs—rooms that house the level objectives, the points of interest, the areas that
provide the most gameplay interest all getfilled in at the beginning. Then come the con-
nectors—the elements that connect the gameplay areas, like corridors, staircases, hid-
den vents, maintenance tunnels, and the like. This is the system of building content
from the most important areas—those that are likely to be fixed in place or time —to
the most generic sections that can more easily be changed to fit changes in the level.

NOTE

In parallel to creating the floor plan, we began adding in the gameplay ingredi-
ents. The level was to be about stealth, not combat, so there needed to be some di-
versity in ways to detect the player as he moved through the map. In addition to
patrolling employees, agents, and CIA security patrols, we added many cameras
and alarm panels to ensure that the player’s mistakes would have serious conse-
quences. Cameras were designed to see the player, or unconscious bodies, and raise
the alarm. Alarm panels allowed NPCs that saw the main character or witnessed
something wrong to run to the panel and alert everyone else in the area to the pres-
ence of an intruder. To balance this, the level needed a lot of shadows to let the
player slip by these obstacles, and more importantly, to always have somewhere
nearby where he could hide and wait out a search when he was spotted. Lastly, we
needed to put in markers for every scripted event, cinematic, objective—any event
that would need to be placed within the map and would require the support of an
artist, scriptwriter, modeler, and so on.

Photoshop was used to create the basic floor plan from my layout sketch and
thenseparate layers were set up to separate all these elements for easier reference.
Figure 12.5 shows the lighting layer, which indicates the preliminary areas of lightand shadow for Part One of the level. Figure 12.6 shows the layer that includes the
event information for things like computers with information, NPC conversations,
and the like.

It's importantto stress here that this level of detailstems from the fact that Splin-
ter Cell has a few gameplay systems that overlap all the time. Giving the player the
choice to shoot opponents, sneak by them—or simply bypass them—means that the
levels had a higher gameplay load to support than would, say,a straight combat game
or puzzle adventure title. In a traditional RTSor platformer where the route and pat-
tern of gameplay may be simpler, this level of detail in your design documentation
may not be necessary. On the other hand, your game might support even more sys-
tems and possibilities. The only real rule of creating support documents is that youneed to makethe level clear to the other members of your team and to keep a record
of your design decisions. If you can do this through a simple line drawing ora single
Word document, there’s no need to make more work for yourself.

318 Game Level Design

FIGURE 12.5 A map showing the rough
locations oflight and shadow. ©2002-2004
Ubisoft Entertainment. All Rights Reserved. Splinter Cell,
Sam Fisher, Ubisoft, the Ubisoft logo, and the Soldier Icon

are trademarks of Ubisoft Entertainment in the U.S. and/or
other countries.

EAT
Camera Jammer Rel CTPA TT

1 Snwak by or NeutralisePn
LETTTraeTTRmT

Listentoconversaion J -alTLRT PEPE Ee AT
F|BOTTCa cable Run
Walt for Fen LetRe]

NocEHeeae ey
aL Rookie

oTBEE |epCamarines
Ld|TESecondary route ;ER§BaeRETELLER

Toke EscalatorLe LT
FIGURE 12.6 The same area as Figure 12.5,
but showing information about in-game
events. ©2002-2004 Ubisoft Entertainment. All Rights
Reserved. Splinter Cell, Sam Fisher, Ubisoft, the Ubisoft
logo, and the Soldier Icon are trademarks of Ubisoft
Entertainment in the U.S. and/or other countries.

With the layout complete, we now had

® An overview ofthe exact size, complexity, and scope of each part ofthe level
The number and type of enemies, their position, and their reason being there

® Positions for cameras, alarms, and computer terminals, shadows, scripted
events, and surprise encounters

I could now go ahead and open the editor to start building the geometry.

BUILDING THE CIA FROM SCRATCH

The CIA was oneofthe first levels made for Splinter Cell, and construction began with-
out much in the way of anything but what could be constructed in the editor. There
were no real models or textures to use extensively, and many that were available were
just placeholders or tests. However, there was plenty of basic geometry to build, so the

A Case Study: The CIA Level from Tom Clancy's Splinter Cell

~~
319

first early drafts of each section came into being in 3D quite quickly. One of the ad-
vantages of doing a lot of design groundwork before you start building is that you an-
ticipate problems early in the process and the actual finished level remains true to the
plan. Building from sketchy information will often result in a level that looks and plays
nothing like the original plans called for—you start to second guess yourself orfill in
details as you go, which can be a detrimentif you don’t have the will to fight feature-
creep. Figure 12.7 shows a comparison between the initial geometry for the lobby
location, and the finished environment from the retail version. Very little has changed
except for the addition of decorative elements, which is mostly because of how exten-
sively it had been planned before whiteboxing.

FIGURE 12.7 The progression of work on the lobby
area. ©2002-2004 Ubisoft Entertainment. All Rights Reserved. Splinter
Cell, Sam Fisher, Ubisoft, the Ubisoft logo, and the Soldier Icon are
trademarks of Ubisoft Entertainment in the U.S. and/or other countries.

320 Game Level Design

Each part of the level was quickly assembled from BSP geometry as a whitebox
in the editor so we could get a feelfor the physical space and suitability for the kind
of stealth gameplay we wanted.

As each area was created, we put whatever textures were available on the sur-
faces and added in temporary lighting to rough out the conditions we expected for
the final product. After all of the areas had been built out in rough, a copy of the
level file was given to a modeler to begin making art assets, while I concentrated on
turning a bunch of empty rooms and corridors into a playable level. The CIA was
a level built in “sections” so each section would get built outalittle, NPCs and game
ingredients would be dropped in, gameplay in that area would be mocked up or im-
plemented in rough, and then I would move on to the next section. In this way,
each finished section could then be reviewed for level of difficulty and gameplay ef-
fectiveness, resulting in quick changes ifit didn’t seem up to par.

THE DANGER OF UNKNOWN METRICS

One complication during production was that the metrics of the game were still in
flux. Things like the main character’s jump height, crouch height, and so on were
set, but the position of the camera during these moves, the amount of clearance
needed, and the proximity at which guards would detect the player were all still
being determined when thefirst levels started production. This meant that when
something was changed, I had to go back and identify problem areas, correcting
them for the new metric. Although nota source of incredible frustration, it did add
up to a surprising amountof time spent reworking the map.

SHIFTING TECHNICAL LIMITATIONS

Another complication was technical limitations, and the little that was known of
them at the beginning of the project. Splinter Cell was designed as an Xbox title
from early on; however, the actual technology that went into the console was being
developed in parallel. The team was also using an engine that was itself undergoing
major technological revisions, and it became clear that much of what we built
needed to be. This led to situations where some areas of levels needed to be heavily
optimized—reducing the amount of geometry or ingredients that used lots of Sys-
tem resources—to keep an acceptable frame rate throughout the level.

For the CIA, it was apparentthat that level was too bigto fit in one map file. To
relieve the console of having to keep all ofthe data in memory,the level was broken
into several parts that would load oneafter the other. A side effect of this was that the

A Case Study: The CIA Level from Tom Clancy's Splinter Cell

~~
321

player could no longer be allowed to go back and visit a part of the CIA once the next
was loaded. Mission objectives had to be setso that a player could only leave the map
once everything he needed to do in that section had been completed. Secondary
goals and optionalobjectives were removed or made mandatory to avoid players get-
ting frustrated when they weren’t allowed to return to a previous section and com-
plete a bonus goal they had forgotten about.

REDUCING THE SCOPE

Splinter Cell wasa title that envisioned multiple choices throughout each levelearly
in the process. The design team had been impressed by the multiple paths in Deus
Ex, released a year earlier, and so each level was initially conceived as having many
routes to completion, each taking advantage ofa particular type of gameplay. The
categorizations for these were the following:

Stealth: avoiding enemies and detection equipment
Athletic: jumping, climbing, and shimmying to navigate the level and avoid de-
tection
Combat: quickly taking out enemies before they could react or raise the alarms

We quickly realized once production started, however, that we wouldn’t have
enough time to complete the levels in their proposed form and ship the game on
time. It would be necessary to cut down the scopeofthe levels, and possibly remove
some maps entirely. Looking at the CIA critically revealed some weak spots that
were suitable for cutting to reduce the overall size and complexity of the mission.

CUTTING BACK ON CONTENT

The cafeteria section as shown in plan form in Figure 12.8, still just at whitebox
stage, could be removed entirely without affecting the flow of the level too much.
Originally, it had been included more for its visual impact and recognizability.
There were no critical objectives in that section, nor was there any particularly spe-
cial gameplay. Removing it would reduce the CIA by one-fifth in volume, but the
impact on the level as a whole would be negligible.

The next target for removal wasthe last part of the level —escorting the van car-
rying Dougherty out of the CIA grounds. This was a slightly more painful amputa-
tion because work had already started on some elements. The animations of the van

322 Game Level Design|PoeHg
WM Avoid detetction while

climbing scaffolding [physical]
IW Distract or Neutralise

Guards to enter side door ly TeLieTESLE
nMove through buffets

MW Use Alarm to distract Agents

LJ
ELT EEEie

IN Player Enters Cafeteria

BW Player Arrives from basement escalator

FIGURE 12.8 The original design for the cafeteria section. ©2002-2004
Ubisoft Entertainment. All Rights Reserved. Splinter Cell, Sam Fisher, Ubisoft, the Ubisoft
logo, and the Soldier Icon are trademarks of Ubisoft Entertainment in the U.S. and/or other
countries.

along the winding exit road had been started, but nothing had gone beyond the first
pass for geometry or lighting. We also knew from the design that the level would
need some unique textures and models created for that section. Removing this sec-tion would bring the level from five parts to three, reducing the physical size, but
not severely affecting the flow or coherence of the mission.

A Case Study: The CIA Level from Tom Clancy's Splinter Cell

~~
323

i A lesson learned here is that really scouring your designs for feasibility early in the
A

process can be useful in identifying parts ofyour level that might be at risk of removal
later down the road. For some teams, it’s acceptable to have expansion joints in a level
design—areas that are identified from the beginning as removable if needed, but that
will help the level be more fun or immersive overall if allowed to remain. For most
teams, however, parts ofa level not strictly necessary for play are not a good use of time
or energy and are axed during the design phase.

RESUMING PRODUCTION

With the reduction in scope and size and a more manageable workload for the
artists and programmers assigned to support the level, work could continue in
making the CIA a living environment. By the time the level was whiteboxed suffi-
ciently to prove out the gameplay and player navigation, many of the art and code
assets for the level had been started and were available to be put in the map. The
next stage was a combination of placing gameplay elements like keypads or com-
puter terminals and decorative elements like vending machines and furniture in
places like the break room shown in Figure 12.9.

The CIA continued to grow,bit by bit, according to plan. Surprisingly, much
of it remained true to the first paper designs. The first sections to receive attention
were those that housed important components of gameplay or specific challenges
that would show off the stealth system. Because the original multipath ideas had
been resolved into a straight stealth path throughout the mission, it was more im-
portantto put in as diverse a collection of sneaking game plays as possible to keep
the player interested and the pace intact. Some of the most ambitious shadow-
based scenarios showed up in the CIA, including the rear lobby where the player
was allowed to shoot out a sequence of lights above him in a relatively well-lit space
to create a shadow-path to move across the floor without being seen by cameras.
Because of the mundane nature of the CIA in reality, the entire level was quite
dark. Partially this was explained away by the fact that the player was sneaking into
the facility at the dead of night. However, many players wondered why the level
seemed to be so inadequately lit. The truth is, when a choice has to be made be-
tween gameplay or realism, there can really be no choice for the level designer—and
keeping the shadows ever-present meant a more usable space for the stealthy player.

Gradually, the level approached an alpha state. Most of the elements that de-
fined the level were in place and working well enough to play through. The main
server room, where the player would find out who the CIA mole was, was complete.
The placement, behavior, and conversations of the night-shift employees that the
player would encounter was solid. Computer terminals and keypads throughout
the maps had been set up with the proper codes and information to allow Sam to
pass through the CIA unhindered.

324 Game Level Design

FIGURE 12.9 A decorated CIA break room. ©2002-2004 Ubisoft Entertainment. All Rights Reserved.
Splinter Cell, Sam Fisher, Ubisoft, the Ubisoft logo, and the Soldier Icon are trademarks of Ubisoft Entertainment inthe U.S. and/or other countries.

CLEANING UP

Most of the changes in geometry stemmed from issues not apparent during the de-
sign phase. Most common of these was that in 3D the level presented some prob-lems that weren’t obvious in the 2D paper maps. For instance, there were occasionswhere a room needed to be lowered, or widened,ora staircase lengthened to makeall the pieces fit, especially whenit was apparent that the player would be confused
by the layout, or unable to move around properly.

A few more serious occurrences camein the form of actual performance prob-lems. For instance,the original plan for the CIA lobby called for a bank of sliding

A Case Study: The CIA Level from Tom Clancy's Splinter Cell

~~
325

glass doors at the front of the building that would connect the interior with the
grounds where the player started. However, it soon became clear that when players
faced the doors from the exterior, they not only saw the lobby, they also saw straight
down it into the room beyond. The amount of polygons involved was causing the
gameto slow down too much. The result was the partitioning of the lobby and the
room behind with a short right-angle corridor.

Lastly, there was the removal of extraneous areas. In any game there needs to be
a balance between the realism ofthe space and the toll of rendering too much in a
scene. In the initial design, there were many offices with no significance in the CIA,
to make it seem less empty, or full of obviously fake office doors. However, in pro-
duction the logical decision was that these be removed, as is the norm in most
games. As we see constantly in level design, reality doesn’t always make the best
model for designing a realistic space.

SCRIPTING

With construction either completed or under control, it was time to turn our atten-
tion to some ofthe critical scripted events that were still in a basic or temporary form.
A good example is the events surrounding Mitch Dougherty, the “mole” that the
player must track down, immobilize, and smuggle out ofthe CIA for questioning.

Mitch was written by JT Petty, our resident scriptwriter, as an obsessive-
compulsive night-shift clerk who would leave his office when the player reached it,
and meander down to the smoking deck—the only way out of the level to the out-
side. The player had to check his computer to make sureit really was the source of
the leak, then follow Mitch out of the building without being seen or detected, and
then haul him down to ground level alive.

The actualscript behind Mitch was quite complicated, involving many pauses
for washing his hands at water fountains, taking to a fellow employee, and entering
codes into security keypads on his way to smokea cigarette. Creating a realistic se-
quence would require many custom animations for Mitch, a complex path network
for him to follow and a large script to control his movement and reactions to the
player. The actual space in which he would move was set and so the work needed
to make a watertight scripted scene was next. Without going into too much into de-
tail, the entire sequence took the close support of a programmer and animator to
getting running to a point where Mitch would not react unexpectedly, and often
amusingly, to seeing the player or hearing a gunshot. In the process, his script be-
came simplified to a point, while keeping the best parts of what we had planned—
stopping to chat to a co-worker, washing his hands in a water fountain, and generally
seeming like he had a real purpose in his actions.

326 Game Level Design

Otherscripted events, such as conversations or even simply having an agentwalk to a vending machine and bang on it after losing his dollar, were worked onin order of importance. Even though many of these events were all ways to have
NPCs move about thelevel, they also often provided entertainment for the obser-
vant player. In one case, the player needs to cross through an auditorium (shownin Figure 12.10) with a briefing in progress. Although not vital to the missions, itworked to create a huge amount of tension as the player moved silently amongst thechairs and oblivious agents in the heart of the CIA, and was meant to be oneof the
Wow Factors in the level.

FIGURE 12.10 A view of the auditorium. ©2002-2004 Ubisoft Entertainment. All Rights
Reserved. Splinter Cell, Sam Fisher, Ubisoft, the Ubisoft logo, and the Soldier Icon are trademarks of
Ubisoft Entertainment in the U.S. and/or other countries.

A Case Study: The CIA Level from Tom Clancy's Splinter Cell

~~
327

TUNING

/
NOTE

The fine-tuning ofa level is often overlooked in the process of building it. However,
with the CIA, there were many small additions and adjustments necessary to create
the optimal experience for the player. Luckily, there was time budgeted for level de-
signers to create ambient and functional changes to enhance the level while they
created the spaces.

Oneof the simplest things a level designer can do nearthe end of the production process
is to go through and make sure the small things are given due attention. By small
things, we mean making sure computers aresitting perfectly on top ofdesks, that doors
fit squarely in frames, that decorations aren’t partially embedded in walls or floors, and
all the myriad of small graphical glitches that occur when putting a map together.

Another tuning task for the CIA was creating deposit points for players to stash
the unconscious bodies of employees to hide them from being seen by other NPCS
on patrol or when searching for the player. Even though the design had specified a
few broom closets and bathrooms in perfect locations for hiding bodies, there was
a greater need for dark corners, overhangs, and shadowy dead ends that would ac-
commodate each players stealth tactics.

ADJUSTING THE DIFFICULTY

Of the NPC types in the CIA, half were armed, with agents using pistols and secu-
rity officers using lethal automatic machine guns. Instead of using their firepower
and the number of enemies in an encounter versus the player as the main tools for
creating different levels of difficulty, we used the physical spaces ofthe level and the
opportunities that came about from combining stationary opponents with moving
characters. Often, the player could wait until a group of opponents dispersed after
talking, or could watch a moving character to see how long it took before he re-
turned, allowing the player to sneak by or neutralize the isolated character.

In a level where there is a lot of tension, you need to give players frequent
pauses or “sanctuaries” where they can catch their breath and plan their next course
of action. The level of difficulty in Splinter Cell comes partly from the frequency of
safe areas compared with the number of exposed areas where the player is in dan-
ger. Individual levels within the game used thisratio to control how easily the player
could progress and how often the player was at risk of alerting the NPCs or taking
enemy fire.

328 Game Level Design

In the end, the CIA fell on the low side of average in difficulty for the game as
a whole. Although there were many areas of danger in the map, and the overall re-
striction on the player of not harming any NPC was always present, there was also
a huge amount of sanctuary space and very few large teams of enemies the player
needed to deal with. Careful planning and observation by the player would ensurethat even less experienced gamers could enjoy a high degree of success.

WRAPPING UP

The CIA ended up being finished bya fellow level designer, Mathieu Bérubé, butitwas completed to the original plan and remained one of only two levels in Splinter
Cell that required a zero-casualty environment. Response to the level from the fan
community was extremely positive. Even though some playersfelt that the level was
too restrictive in not allowing lethal force to be used, an overwhelming number
relished the challenge, and CIA found it’s way into many top-10 lists on Splinter Cell
forums.

From a designer’s perspective, the CIA was an unusually compliant level. Verylittle of it differed drastically from the original design, and someone who had never
played the level could probably use the initial paper layouts to navigate by. Though
large parts were cut, they were all somewhat secondary to the mission as a whole
and resulted in a leanerlevel overall. This speaks volumes about the need for sub-
stantial pre-design and design time before building a level.

SUMMARY

In this chapter, I talked about the process of making a level from scratch for a
stealth-based console title. Your game may bea different genre, or for a much dif-
ferent platform, but many of the points brought up here will be applicable.

What Went Wrong

® The team didn’t have enough prior experience with the engine to be able to
predict the technicallimitations for the title. Thus, many parts of the map had
to be visually sealed off from the others, and the level was broken into moreloads than originally planned for, which affected the flow somewhat.

® We underestimated how long it would take to make each level. In the case of the
CIA, this led to almost half of the level being cut midway through construction.

A Case Study: The CIA Level from Tom Clancy's Splinter Cell

~~
329

® The scope of the gameplay needed to be brought down as the map went through
production. The early design called for the level to support multiple gameplay
types including stealth, action, and combat, butall these would have specific re-
quirements from the environment. In the end, any work not involving stealth
needed redesigning, sometimes involving a significant amount of time, as the
focus became solely on making the player sneak through the entire level.

® Limitations for the amount of Al in any one area meant that the CIA seemed a
little deserted, even for the late-night setting.

What Went Right

® Alot of time spent on sketching and planning meant that many of the prob-
lems with the initial design were caught early, sometimes even before building
had started.

® Good references helped to create a realistic (or passably realistic) environment
for the interior of a building the public has rarely seen.

® Aclear design and a solid mission abstract atthe beginning of the project meant
that we could design in greater detail in the planning stage knowing exactly
what elements were to be used, what was happening in the story, who the vital
characters were, and so forth.

® Assets made for other levels wereeasily reused in the CIA, such as computers,
seating, vending machines, and so on. This meant that during the building of
the level we could place decorative elements instead of waiting until the end to
place them all as polish work.

= Final Word13

331

332 Game Level Design

In This Chapter
® The End of the Beginning
Where to Go Next
Thanks to You, the Reader

THE END OF THE BEGINNING

Even in a book this size,it is only possible to cover many of the subjects briefly,
leaving a great deal to explore about the topics we have touched on. Architecture,
lighting, history, geography, psychology, sociology, and on and on—level designers
never stops learning to be better at what they do. So, although you have reached the
end of this particular book, it’s really just the beginning of what’s available on the
subject—there are countless avenues to explore from here.

WHERE TO GO NEXT

Books

For continued research on game design and related fields past, present, and future,
investigate the following resources:

Andrew Rollings and Ernest Adams. Andrew Rollings and Ernest Adams on
Game Design. Indianapolis: New Riders, 2003.
Terry Byrne. Production Design for Television. Boston: Focal Press, 1993.
Steven L. Kent. The Ultimate History of Video Games: From Pong to Pokemon.
Roseville, CA: Prima Lifestyles, 2001.
Tom Meigs. Ultimate Game Design: Building Game Worlds. New York: Mc-
Graw-Hill, 2003.
Matthew Omernick. Creating the Art of the Game. Indianapolis: Pearson Edu-
cation, 2004.
Andrew Rollings and Dave Morris. Game Architecture and Design: A New Ad-
dition. Indianapolis: New Riders, 2003.
Katie Salen and Eric Zimmerman. Rules of Play: Game Design Fundamentals.
Boston: MIT Press, 2003.
Herbert Zettl. Sight, Sound, Motion: Applied Media Aesthetics. Belmont, CA:
Wadsworth, 1990.

Final Word 333

Web Sites

There are many, many places to visit on the Internet to learn more about game andlevel design, from fansites to professional journals. Here are some great places to start:

® Gamasutra (www.gamasutra.com) is a dedicated site for articles and features
aboutall aspects of game development. It is also the Web presence for Game
Developer magazine. Gamasutra also has the best posting boards for jobs in the
industry.

® The International Game Developers Association (www. igda.org) is a large or-ganization of game makers and enthusiasts, with an extensive and active dis-cussion forum for almost every related topic.
® The Unreal Developers’ Network (udn.epicgames.com) is the central repositoryfor news, tutorials, and information about the Unreal engine and related pro-jects. If you want to learn how to use the engine that comes with this book like

a professional, the UDN has everything you need.
® GameDev.net (www.gamedev.net) is another Web site dedicated to game de-

velopment and packed full of news and information.

THANKS TO YOU, THE READER

Finally, thanks to you, the reader, for purchasing and reading this book.

Appendix About the CD-ROM

ter are included in the figures folder for each chapter. As you read the book,T= book includes a standard PC format CD-ROM. Figures from each chap-

you may wantto look at the same figure on the CD-ROM as the one refer-
enced in the chapter; the figures are full size and in color on the CD-ROM and are
named with the same reference number used in the text.

The Folders

The CD-ROM contains the following folders and files:

@ Chapter 1 through Chapter 10 each contain a subfolder with the name figures
that contain full-size, color copies of the figures referenced in the text. Nofig-
ures are provided for Chapters 11, 12, or 13 because of copyright issues or be-
cause none were used in the chapters.
Sample Documents contains several design document templates you can ex-
amine and use.
Resource contains an HTML file that has a list of links to useful Web sites.
Double-click it to open it in Internet Explorer’s browser.
Software contains the following:
* A free trial version of Adobe Photoshop CS, the leading digital imaging and

editing application used in game development.
* A copy of Terragen,a free 3D landscape creation program, excellent for cre-

ating skybox textures.
+ A copy of Open Office, a completely free, open source office suite that was

used to write this book and is compatible with Microsoft Office.
+ A fully functional demo copy of the Unreal Engine, used for most of the in-

game illustrations in this book.
Demo_Level contains the following files:

* DemoMap.urt, a small explorable level used to create many example screen-
shots for the book, which can be loaded and run within the Unreal Engine
Demo included on the CD-ROM. Copythisfile into the Unreal Engines
/maps folderafter installation.

335

336 Game Level Design

+ Book_Demo_Textures.utx, the textures needed to view the demo map.
Copythisfile into the Unreal Engine’s /textures folderafter installation.

+ Book_Demo_Staticmesh.usx, the objects needed to view the demo map.
Copy this file into the Unreal Engine’s /staticmesh folder after installation.

SYSTEM REQUIREMENTS

System Requirements for Included Software

System requirements for all of the software included on this CD-ROM can be
found in the Readme.txt file in each individual folder within the main Software
folder, but you will at least need DirectX 8.1b3 or higher; 250 MB available hard
disk space, Java Runtime environment installed (free at http://java.com), 256 MB
RAM, 16 MB NVIDIA TNT2-Class or other DirectX version 8-compliant video
card, Windows-compatible sound card, and a 33.3 Kbps modem.

Minimum System Requirements

Viewing the figures included on the CD-ROM requires the following:

Windows® XP / 2000 / 98 / 95
Intel® or AMD processor at 300 MHz
192MB RAM

Graphics card and monitor supporting 1024 Xx 768 viewing resolution at 16-bit
color minimum
Windows-compliant pointing device
CD-ROM drive
Internet Explorer 4.0 or higher

To use the UnrealEngine, you will need DirectX 8.1b3 or higher. Please also read
the Unreal Engine Runtime demo End-User License here and on the CD-ROM.

UNREALENGINE2 RUNTIME DEMO VERSION END-USER
LICENSE AGREEMENT

Document Summary: This document contains the latest version of the end-user license agreement you are required to ac-
cept ifyou want to download and use the UnrealEngine2 Runtime software. It will link to version-specific pages if licenses
differ between versions, and those pages will contain the latest versions.

About the CD-ROM 337

END-USER LICENSE AGREEMENT

PLEASE READ CAREFULLY. BY USING OR INSTALLING THIS SOFTWARE, OR BY
PLACING OR COPYING THIS SOFTWARE ON YOUR COMPUTER HARDWARE,
COMPUTER RAM OR OTHER STORAGE MEDIUM, YOU ARE AGREEING TO BE
BOUND BY THE TERMS OF THIS LICENSE. IF YOU DO NOT AGREE TO THESE
TERMS, PROMPTLY DISCONTINUE THE INSTALLATION PROCESS AND CEASE
ALL USE OF THIS SOFTWARE.

1. Thanks. Congratulations and thank you for licensing our software. We're sorry to cramp your style, but
our lawyers tell us that if we want to keep control and ownership ofthe cool stuff we’re developing, we
have to make sure you understand and agree that you are just getting a right to use it and that that right
is limited in certain ways. So here’s what you need to know and agree to.

2. License. The Unreal Engine 2 Runtime: DEMO VERSION andthe related documentation (the “Run-
time Software”) islicensed for your use, subject to terms and limitations in this license agreement.

3. Commercial Exploitation. You may not use this Runtime Software, or any content created with it, or
use the tools provided with this Runtime Software for any commercial purpose whatsoever

4. Use Restrictions. We want you to enjoy our products for years to come, and we want to be able to con-
tinue to release awesome stuff, so you need to be aware that there are some things you cannot do with
the Runtime Software. The Runtime Software contains copyrighted material, trade secrets and other
proprietary material. You may not decompile, modify, reverse engineer, prepare derivative works based
on the Runtime Software, or disassemble the Runtime Software. You may not rent, sell, lease, barter,
or sublicense the Runtime Software. You may not delete the copyright notices or any other proprietary
legends on the original copy of the Runtime Software. You may not offer the Runtime Software on a
pay per play basis or otherwise commercially exploit the Runtime Software or use the Runtime Soft-
ware for any commercial purpose. You may, however, use the Runtime Software for non-commercial
and educational purposes. You may not ship or export the Runtime Software to any country that
would be in violation of the U.S. Export Administration Act (or any other law governing such matters)
and you will not utilize and will not authorize anyone to utilize the Runtime Software in violation of
any applicable law. The Runtime Software may not be downloaded or otherwise exported into (orto a
national or resident of) any country to which the U.S. has embargoed goods or to anyone orinto any
country who/which are prohibited by applicable law, from receiving it. YOU MAY NOT USE THE
RUNTIME SOFTWARE TO DEVELOP GAMES. YES, I KNOW THIS SOUNDS NASTY BUT LETS
FACE IT, EPIC’S PRIMARY MEANS OF INCOME COMES FROM GAME SALES AND ENGINE LI-
CENSING. WE WOULD BE SHOOTING OURSELVES IN THE FOOT IF WE ALLOWED AN ENGINE
WE GAVE AWAY FOR FREE TO TRAMPLE OUR PRIMARY MEANS OF INCOME. SORRY, BUT IF
YOU WANT TO DEVELOP A GAME PLEASE DEVELOP IT AS A MOD FOR ONE OF OUR EXIST-
ING RETAIL GAME PRODUCTS OR CONTACT US REGARDING A PROPER ENGINE LICENSE.
(More information on the Unreal Engine 2 licensing can be found at: http://www.epicgames.com/licens-
ing.html.) THANKS FOR YOUR UNDERSTANDING AND SUPPORT. (FYI: Our desire to release Run-
time Software for future versions of the Unreal Engine will diminish if folks blow us off and develop or
release games using the Runtime Software in violation ofthe above terms.)

5. Termination. This licenseis effective until one of us terminate it. You may terminate this license at any
time by destroying the Runtime Software and related documentation. In the unlikely event that you are
naughty and fail to comply with any provision of this license, this license will terminate immediately
without notice from us. Upon termination, you must destroy the Runtime Software and related docu-
mentation. Please don’t wait for us to come after you; it would not be pleasant for either ofus. If we do
have to come after you, we're going to expect you to pay us for our troubles, including the cost of our
lawyers.

338 Game Level Design

6.

10.

12.

Disclaimer of Warranty on Software. You are aware and agree that use of the Runtime Software and
the media on which it is recorded at your sole risk. The Runtime Software,related documentation and
the media are provided “AS IS”. EPIC EXPRESSLY DISCLAIMS ALL OTHER WARRANTIES. EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. WE DO NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN "THE RUNTIME SOFTWARE WILL MEET YOUR RE-
QUIREMENTS. NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY US OR ANY OF
OUR AUTHORIZED REPRESENTATIVES SHALL CREATE A WARRANTY OR IN ANY WAY
INCREASE THE SCOPE OF THIS WARRANTY. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO
YOU.
Limitation of Liability. UNDER NO CIRCUMSTANCES, INCLUDING WITHOUT LIMITATION,
NEGLIGENCE, SHALL EPIC OR ANY OF THEIR RESPECTIVE OFFICERS, EMPLOYEES, DIREC-
TORS, AGENTS, LICENSEES, SUBLICENSEE OR ASSIGNS BE LIABLE FOR ANY INCIDENTAL,
SPECIAL OR CONSEQUENTIAL DAMAGES THAT RESULT FROM THE USE OR INABILITY TO
USE THE RUNTIME SOFTWARE OR RELATED DOCUMENTATION, EVEN IF SUCH PARTIES
HAVE BEEN ADVISED OF THE POSSIBILITY OF THOSE DAMAGES. SOME JURISDICTIONS
DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY

TO YOU. In no event shall our total liability to you for all damages, losses, and causes of action
(whetherin contract, tort or otherwise) exceed the amount paid by you for the Runtime Software.
Controlling Law and Severability. This license is governed by and construed in accordance with the
laws of the State of North Carolina, USA. The exclusive venue forall litigation shall be in Wake County,
North Carolina. If any provision of this license is unenforceable, we will crossit out and the rest of it
shall remain in effect.
Complete Agreement. Thislicense constitutes the entire agreement between the parties with respect to
the use of the Runtime Software and the related documentation. However, Epic reserves the right to
modify the terms of this license from time to time and will post notice of material changes somewhere
within www.epicgames.com.
Copyright. The Runtime Software and all copyrights, trademarks and all other conceivable intellectual
property rights related to the Runtime Software are owned by Epic or Epic’s licensors and are protected
by United States copyrights laws, international treaty provisions, an army of clones, and all applicable
law, such as the Lanham Act. You must treat the Runtime Software like any other copyrighted mater-
ial, as required by 17 U.S.C. section 101 et seq. and other applicable law.

. Enjoyment Requirements. We are aware that there are rumblings and grumblings within the software
community about heavy handed, legally onerous license agreements. You have our word that this one
is as fair and even handed as it gets and, as you have read this far, you know it to be true. Now, be gone
from this screen and enjoy the Runtime Software!
EULA Modifications. You agree that Epic reserves the right, from time to time, to modify the terms of
this license agreement and that you will abide by the updated terms as posted at http://udn.epicgames.
com/Two/UnrealEngine2RuntimeEULA. You also agree to remain up-to-date and in compliance with

the most current license terms.

Copyright © 2001-2004 Epic Games

= Index

2D games vs. 3D games, 209-210
2D image editing programs and texture

art, 35
3D meshes, modelers and, 34
3D space, moving and working in, 177

A
abstract vs. real measurement units,

195-196
abstracts, level, 84-86
activation criteria, 155
actors

adding static mesh, 198-199
described, placing, 187-192

Adams, Ernest, 24

adding
to critical path, 291-292
details to level draft, 151-159
PlayerStart actor, 188-190
static mesh actor, 198-199

adjusting
BSP, 201
difficulty dynamically, 74

Adobe Photoshop, 35
adult games vs. children’s, 82
aesthetics

described, 240
rhythm, 69-70

aggressive state, 106
AL See artificial intelligence (AI)
ambient lights, 258-259
ambient sounds, 38
Andrew Rollings and Ernest Adams on

Game Design (New Riders), 24
animation, Al output, 107
animators role described, 34

anti-portals, 231

anxiety, evoking in player, 294
applying

textures correctly, 245-246
textures to levels, 196-197

arcade games, boredom in, 64-65
art

See also graphics
conceptualizing levels with visuals,

162-163
and level design, 4-5, 238
team and development team, 34

artificial intelligence (AI)
decision-making, 128-131

and good level design, 287-288
navigation of NPCs, 131-134
using in levels, 105-109

artists, reviewing level with, 164

asset list, 160-161
assets

modular, 235
saving in packages, 194

atmosphere
creating, 293-298
and level design, 51

audio
atmospheric, 298

department, role described, 38-39
effects. See sound effects

availability of ingredients, 95
avatar

See also players
size of, on handhelds, 79

awareness
and processing cost, 128-129
aware state, 105

axis indicator in UnrealEd (fig.), 177

B
backtracking, 146

bagatelle, 7

beginning
Clownhunt game, 19-20

and level design, 16-17
believability

and dissonance, 62-64, 282-283
and feasibility, 56-57
and player investment, 288-293
testing designs early for, 323
and thematic elements, 284-288

Bérubé, Mathieu, 277-279, 328
binary spatial partitioning. See BSP
blocking

See also whiteboxing
in levels, 151

books about level design, 332
boredom, preventing player, 64-66
boss battles, 154-155
bottlenecking map and flow models,

88-89
boundaries, defining, 86-93

brainstorming, 146-148
branching levels, flow model, 89-90
branching narratives, 297
breaking games into levels, 11-12
brightness, lighting, 256
brushes

BSP, using, 179

described, using, 183-187
BSP (binary spatial partitioning)

adjusting and duplicating, 201-203
building hull level in, 183-187

adjusting, duplicating, 201

creating, using, 179-180
in Splinter Cell, 320

bubble drawing, 148
‘bubble wrap’ textures, 186
builder brushes, 185-187
building levels, approaches to, 223-227
builds

changing parameters, 200
of games in progress, 31
Burnout racing series, 96

C

callouts on map drawings, 159

camera movement controls in Unreal Ed,
177-178

Carlson, Rich, 299-304
CD-ROM, this book’s

asset list, 161

contents of, system requirements,
335-336

and documenting ingredients, 96
static meshes in, 199
Unreal Runtime Demo, installing, 172

CD-ROMs and media formats, 135
celestial lighting, 258-260
cell diagram. See diagrams
challenges

in Clownhunt, determining mechan-
ics, 22-26

gameplay, 22
and level design, 16-17

changing
See also adjusting
gameplay topography, 66
textures, models or lighting, 70

chapter summaries
basic building techniques, 234
basic level design theory, 77-78
building 3D space in UnrealEd, 205
building simple level, 26-27
introduction to game level design, 12
level design and documentation, 165
level design limitations, 139-140
refining player experience, 109-110
Splinter Cell case study, 328-329
team roles and the pipeline, 48
theme, investment, atmosphere, 298
visual design, 277

characters, character players
accents and costume, 286
adjusting props for, 271
backtracking, 146
dimensions, 79, 143-144

339

340 Game Level Design

placement of, 153
and polycount, 125-126
powerups, 144

children’s games vs. adult, 82
choices, risks and rewards for making,

103-104
CIA level, Splinter Cell, 305-329
cinematics, design and placement on map,

156-157
Clancy, Tom, 305
Clownhunt game, level building blocks in,

18-26
clues

controlling difficulty and, 73

directing player with consistent, 61,

clutter, 271-272
collision primitives and character dimen-

sions, 143
collision problems, 272
colors

and lighting, 253, 263-264
within textures, 250-251
tints, 257

commercial modeling programs, 34
commercial games

constraints in licensed games, 139
and development teams, 30-31

Commodore 64, 10

complex shapes, 222-223
composers, role described, 39

computer-driven playfields, 8

concept
art, artists, 36, 162
Clownhunt game, 18-19
and level design, 16-17, 308-309

conferencing, war rooms, 149

connectivity
connecting spaces, 157-158
and defining boundaries, 86-93

consistency
of gameplay, 115

of lights and sources, 264-265
of players, 288-293
of texturing, 250-251

console games, media format, 134-135
constraints

environmental, on level design,
136-139

technical, on level design, 122-136
contrast

color, 264
and lighting, 266-267

controlling difficulty, 73-74
controls, camera movement, in UnrealEd,

177-178
corridors, connecting, 158

costumes, 286
CPU (central processing unit)

and frame rate, 124-125
and layered navigation systems,

133-134
and processing costs, 128-136

creating
BSP (binary spatial partitioning), 179
builder brushes, 185-187
level abstract, 84-86, 308

levels, 50
paper designs, 150-159, 301

rooms, 183-184
tension, 100-103

creative director and development team,
31-32

Crimsonland, 65
critical path described, keeping player on,

291

curve, difficulty, 71-74
customizing the building process, 227

cut-scenes artists, role described, 39

D

Dark Forces 2: Jedi Knight (LucasArts), 77
day setting, 137
deadlines and game design,45
decisions

AI processing costs of, 128-131
and artificial intelligence, 106-107
in RTS scenarios vs. FPS games, 167

decorative elements, adding, 212, 226, 271

deduction, and player encounters, 98

Defender, 8-9
design

documents. See documentation
environment, choosing your, 160

key in maps, 152-153
level. See level design
‘tuning,’ 5

designers
in game industry, 32-33
level. See level designers

designing levels, 141-165
detection range of enemies, 153
DEU (Doom Editing Utility), 12

development teams
described, 30-31

examples of (figs.), 41, 42, 43
job responsibilities and boundaries,

118-119
and management personnel, 31-32
peer reviews, 164

pipeline from their perspective, 48
setup, 40-44
sign-offs on paper designs, 165

Splinter Cell, 307
diagrams

cell diagram showing rhythm beats
(fig.), 69

cell diagram with gameplay elements
(fig.), 148

difficulty curves, waves, graphs (figs.),
71-74

game’s rhythm graph (fig.), 68

using on map drawings, 159

dialog, accented, 286
difficulty

assessing and controlling, 71-74
level abstract element, 85
and player’s comfort level, 61, 169

dimensions
of avatar, 79

of nonplayer characters, 143
dissonance

and importance of believability,
62-64, 282-283

in level design,21
documentation

design documents, 33
level design recommendations, 110
level drafts, 151-158
for Splinter Cell, 308-312
supporting documents, 160-161

Doom, 12, 127, 256, 302
doorways

connecting, 158
Duke Nukem, 117-118
Dungeon Master, 117
Dungeons and Dragons, 6

dynamic level generation, 92-93
dynamic lighting, 127, 176, 256, 260

E

Easter eggs, design and placement on map,
159

editor
game, 47-48
programmer tool, 37
UnrealEd. See UnrealEd

elevators, connecting, 158
Elite, 90
emergent gameplay, 86

emitters, particle, 126, 275-276
encounters

creating, 302
and level design, 98-99

ending
Clownhunt game, 20
and level design, 16-17

enemies
and controlling difficulty, 73
level abstract element, 85

placement of, 153, 158
and player ergonomics, 59

engine, game. See game engines
engineering and level design, 5-6
Ensemble Studios, 166, 168

environment
choosing your design, 160

Clownhunt game, 19

and creating tension, 101
level abstract element, 85
and level design, 16-17

environmental limitations oflevel design,
136-139

Epic Games ‘Unreal’ engine
and Splinter Cell, 307
Web site, 203

ergonomics, player, 59-61
events

scripted (fig.), 104

triggered, 154-155
expendables, design and placement on

map, 155-156
extrinsic knowledge, 24

F

failures
in Clownhunt, 26
and level design, 16-17

fear, evoking in player, 294
feeling. See atmosphere
File menu, UnrealEd, 174

fill lights, 258-259, 262-263
FireTeam, 113
First Person Shooter (FPS) games

and invisible input, 106

vs. RTS scenarios, 166
what makes fun in, 58

Fischer, Ian, 166-170
fixing bugs, level designer’s role, 49
flavors within genres, 300
floating geometry, 219-221
flow

maintaining level, 62-66
models of, 87-93
walkthroughs, 161

flowcharting programs, 160

fog, rendering, 273-275
foreign accents, 286
foreshadowing, 100-101
formats

file, and design environment, 160
media, and performance, 134-135

frame rate limitation on level design, 124
front view, camera controls, 178
fun

balancing with feasibility, 56-57
what makes, 57-58

functional vs. aesthetic considerations,
240-242

further information on level design,
332-333

G

Game Boy Avance (GBA), 78

game consoles and graphics programmers,
37-38

game design
contemporary, 12-14

hooks, designing, 76-78
level. See level design
overview of, 2-3

game designers
and level designers, 3—4

role described, 33
unreliable for vital game data, 144

game development
See also game industry
contemporary, 9-10, 12-14

and reliable game data, 144

game editors, 47-48
game engines

described, 47
Epic Games ‘Unreal,’ 203, 307
and RPGs, 92

scriptable particle systems, 35

testing levels in, 192-193
game industry

careers in, 82, 110-115, 166, 238, 304
future of, 116

keeping a job in, 52-53, 237
roles in, 31-34

game levels
design. See level design
and pipeline, 44-45

game lighting, 253
game logic, 24

game metrics and player metrics, 142-144
game-programming roles, 36-38

game teams, workload division, 11
game writers, role described, 39-40
gameplay

consistency of, 115

creating tension, 100-103
early development of, 8-9
emergent, 86
generating, 146-148

level abstract elements, 85
levels as containers for, 137
narrative, 93-94

programmers, 37

scripted, setting up, 104-105
vs. graphics, 240-241, 279
vs. story, 18, 40
and whiteboxing, 210
Wow factor and, 74-76

games
See also specific game
2D vs. 3D, 209-210
first person shooter. See First Person

Shooter (FPS) games
head-up display (HUD) in, 35
levels in, 3-4
licensed, constraints in, 139
light parameters, 256-258
and minigames, 154

puzzle, levels in (fig.), 17

role-playing games (RPG), 87
‘sim,’ 105

GBA (Game Boy Avance), 78
GDC (Game Developers’ Conference

2000), 114

generating gameplay, 146-148
geometry

breaking up, to support texturing,
50

creating clean, 204-205
flat vs. textured, 222
floating, 219-221
level, working with, 178-183
subtractive, 183

types in UnrealEd, 179-180
gestalt, level, 109

goals
Clownhunt game, 20-21
designing level ingredients, 95

and level design, 16-17
Grand Theft Auto 3 (GTA3), 7, 90
graphics

See also art
conceptualizing levels with visuals,

162-163
programmers’ roles, 37-38

graphics processor units (GPUs), use in
games, 124

graphs. See diagrams
gravity

environmental limitations,
138-139

in gameplay, 23
Gray, Richard, 12-14
grids

described, using, 204-205
and level design, 236
pivot points in, 205

Griptonite Games, 78

Index 341

H

Half-Life, 129, 156, 295
Hall of Mirrors (HOM), 221
handhelds, level design for, 78-79
Harry Potter and the Prisoner of Azkaban,

276, 287
head-up display (HUD), 35-36
history of levels, 7-9
holes, structural, 221

home-gaming, early development of, 9
hooks, designing, 76-78
hotspots, 108
hubs and spokes, levels flow model,

90-92

1

ICO for PlayStation 2, 60
illumination. See lighting

image editing programs and texture art, 35

importing static meshes, 181

in-game objects, creating rules for re-
sponses, 25

ingredients
and level design gestalt, 109
of levels generally, 94-96
physics as, 96-97

input and artificial intelligence, 106-107
interactivity

and future of game industry, 237
and levels, 103
of nonplayer characters, 290
of scripted sequences, 156

interface artists, role described, 35-36
interviews with level designers

Bérubé, Mathieu, 277-279
Carlson, Rich, 299-304
Fischer, Tan, 166-170
Gray, Richard, 12-14
Perry, Lee, 235-238
Smith, Dream, 78-82
Smith, Harvey, 110-119
Wilkinson, Hayden, 48-53

intranets, game design on, 33
intrinsic knowledge, 24
items

consistency with theme, 288
design and placement on map,

155-156
inventory, design and placement on

map, 155-156

K

key, design, 152-153
knowledge

challenging player’s game, 99-100
intrinsic and extrinsic, 24

KnowWonder Digital Mediaworks, 48

L

layer and section level building techniques,
223-227

lead positions
in game industry, 32
lead level designer, 45
reviewing level with, 164

Legend of Zelda, The, 100, 154
level

342 Game Level Design

design. See level design, level designers
drafts, adding details to, 151-159
flow, maintaining, 62-66
geometry, working with, 178-183
hull. See level hull
lighting, 127-128, 253-256

level design
anatomy of, 4-6
balancing fun and feasibility, 56

brainstorming, war rooms, 146-149
building blocks of, 16-17
case study from Splinter Cell, 305-329
contemporary, 9-12
designing and documenting levels,

139-165
environmental limitations, 136-139
fine-tuning levels, 327
future of, 116

gestalt, 109

graphics vs. gameplay, 240-242
for handhelds, 78

hooks, designing, 76-78
level flow, 62-66
maintaining rhythm, 66-71
measurement units in, 195-196
references, researching, 312-315
resources for continued research,

332-333
scripting. See scripting
systemic, 90
technical limitations, 122-136
using artificial intelligence (AI),

105-109
level designers

communicating with other depart-
ments, 118

interviews with. See interviews with
level designers

roles and responsibilities of, 3-4, 13,
33

level hull
building in BSP, 183-187
described, whiteboxing, 212-223

levels
building, approaches to, 223-227
conceptualizing with visuals, 162-163
defining, 6-7
designing and documenting, 141-165
dynamic generation, 92-93
fine-tuning, 327

flow models of, 86-93
ingredients of, 94-96
interactivity of, 103
location constraints, 137

narrative chapters and, 11

priorities for creating, 50-51
testing, 192-193
viewing in UnrealEd, 175-176
what makes fun, 57-58

license agreement, UnrealEd, 337-340
licensed titles and designer constraints,

139
lifelike behavior and player decisions, 106

light blooms, 38

lighting
adding to level, 190-191
common light types, 258-262

common mistakes, 269-271
creating dramatic, 101

day and night, 137-138
default, 200
design and placement on map,

158-159
drastic changes in style, 70
game and level, 253-256
and good level design, 286
level, and performance, 127-128
level lighting techniques, 262-268
light behavior, 252
lightmaps, using, 254
lights as actors, 187

in multiplayer levels, 268-269
parameters in games, 256-258

linear flow levels, 87-88
live motion capture, 34

loading textures, 193-196
location

See also placement
constraints on, 137

level abstract element, 85
loose-leaf gameplay ideas (fig.), 147

mM

management, and the development team,
31-32

mapping
difficulty, 71-74
textures, 245

maps
2D representation of, 150

building. See builds
and generating gameplay, 146-148
andlevel drafts, 151-158
and levels, 6

and models of flow, 87-93
pathing and patrols, 107-109
sectoring, 228-229
starting with UnrealEd, 173-174
theme, elements of, 284-288
walkthroughs, 161

Zork, 301
marker key, 152-153
massively multiplayer (MMP) games,

teams for, 44
materials and textures, 244-245
Mathematical Help Central Web site, 151

measurement units
See also metrics
in level design, 195-196
textures, 243, 245

media formats and performance, 134-135

memory
early constraints on, 10

limitations, and level design, 122-124
and player encounters, 98

meshes
character dimensions and, 143

skeletal, 181
static. See static meshes

messages, game, and Al output, 107
metrics

See also measurement units
danger of unknown, 320
for different games, 144-146

game, player, 142-144
Microsoft Visio program, 160

Midnight Club II, 86

minigames, 154
missions

abstracts, 84-86
and levels, 6

MMPs (massively multiplayer games), 44
mo-cap (live motion capture), 34
modeler’s role described, 34
models

drastic changes in, 70
flow, 86-93
workflow scale, 114

modification ‘mod’ groups, 30
modifiers

permanent, 146

temporary, 144-145
modular assets, 235
moving

in 3D space, 177

actors in the level, 197-198
vertices, 201

multiplayer games
creative freedom in, 236
lighting in, 268-269
massively, 44

music
atmospheric audio, 298
composer’s role, 39
and creating tension, 102
and good level design, 285

Myst, 61, 63

N
narrative

chapters, 11, 18

gameplay, 93-94
natural elements, 285
navigation

Al processing costs of, 131-134
routes, laying out, 108

night setting, 137

nodes, limiting use of, 108

nonplayer characters (NPCs)
Al navigation techniques, 131-132
dimensions of, 143

estimating room for movement, 108

and game design,2
giving life to, 289-290
and scripted sequences, 156-157

nontiling textures, 247-248
NPCs. See nonplayer characters

o
objectives, level abstract element, 85

objects
See also specific object
creating rules for in-game object

responses, 25

expendables, 155-156
making 3D, 204
occlusion, 230-232
overlapping, 218
rotating, 199

self-illuminating, 262
static meshes. See static meshes

obstacles, design and placement on map,
158-159

occlusion objects and performance opti-
mization, 230-232

Okamoto, Yoshiki, 52

open levels flow model, 90-91
openings, connecting, 158

optimization techniques, 227-233
Origin Systems, 110

orthographic views, 175-176
Out Run, 90
output, and artificial intelligence, 106-107

Pp

PacMan, 7, 8,117
paper designs

creating, 150-159, 301
design environment, 160-164
Level Design Doc, 277-278
obtaining sign-off, 165
reviewing, revising, 163-165

parallel lighting, 260
particle effects, 35, 275-276
particle emitters and performance, 126
passageways, connecting, 158
pathing and patrols, 107-109
pathnodes and navigation, 131-133
patrols

pathing and, 107-109
placement of, 153

PC games, media format, 134-135
peer reviews, 164
performance

and dynamic lighting, 127-128
issuesforlevel designers, 51
level design, 124-126
and particle emitters, 276
polycount and, 125-127

Perry, Lee, 235-238
photos, using as textures, 246-247
Photoshop, 317
physical boredom, 64
physics as ingredients, 96-97
pinball design and level design, 7-8
pipeline

benefits ofsolid, 45-46
as defined by the development team, 48
described, level designer’s role, 44-45
game production, described, 30
for Splinter Cell, 307
and technology, 46

pivot points in grids, 205
pixels, texture sizes, 243-244
placement

of actors, 187-192
oflevel ingredients, 95
of lighting, 266-267

Planetfall, 9

planning environments, 138-139
player ergonomics, 59-61
players, player characters

See also characters
allowing to affect lighting, 268
allowing to save and reload, 60-61
awarenessof triggers, 157
believability and consistency, 288-293
challenging game knowledge of, 99-100

encounters and, 98-99
experience and difficulty, 71-74
experience and level hull, 212-213
giving clues to, 61

leading the, 80
level abstract element, 85

maintaining level flow, preventing
boredom, 62-66

penalties, and controlling difficulty, 74
risks and rewards of choices, 103-104

PlayerStart actor, creating and placing,
188-190

PlayStation 2, ICO for, 60
pointlights, 258-259
polish items, adding, 212
polycount and performance, 125-127
Pong, 8,10
portable systems, designing games for, 80
portals and zones, 230-232
position, level abstract element, 85

powerups, 144-145, 155-156
processing power

and artificial intelligence, 128-136
limitation on level design, 124

producers and development team, 31

programmers, 36-38, 164
project managers and development team,

31

projected textures, 268
props, placing, 271-272
puzzle games

level building blocks in simple (fig.), 17
physics as ingredients, 97

puzzles
design and placement on map, 153-155
working components into level, 287

Q
Quake, 63, 117, 299, 302
quality

shifts in, 70-71
of construction at skeletal level,

217-218

R

radiosity lighting engine, 259
Raiders of the Lost Ark (movie), 294
random movement, using artificial intelli-

gence (AI), 108-109
range and brightness of lighting, 256-257
reactions and player encounters, 98
real-time cinematics, 156

real-time lighting, 256, 260
real-time simulations (RTSs)

and rendering time, 126
scale in, 214-215
vs. FPS games, 166-167
weights of units, 144

real vs. abstract measurement units,
195-196

realistic factors
and game design, 24
scale, and, 213-216
vs. immersion, 290-291

redoing in UnrealEd, 175
reference art, 162, 312-315
release dates and game design,45

343Index

render bloat, 291
Resident Evil, 123, 294
resources

about level design, 332-333
controlling difficulty and, 73
design and placement on map, 155-156

responsibilities of level designers, 3-4, 13
reviews, revisions of paper designs, 163-165
rewards

of choices, 103-104
in Clownhunt, 26
and level design, 16-17
and permanent modifiers, 146

rhythm
and emotional tempo, 294
maintaining across levels, 66-71

risks of choices, 103-104
Robotron, 64
role-playing games (RPGs)

dynamic level generation, 92-93
flow vs. freedom in, 87

Rollings, Andrew, 24
rooms

creating with Unreal Ed, 183-184
lighting, 190-192
placing actors in, 187-190
setting properties of, 185
texturing, 193-195
viewing finished, 203

rotating actors, 199

routes, navigation, 131-133, 131-134
RPGs. See role-playing games
RTSs. See real-time simulations
rules in scripting, 25

S
sandbox levels, 90
saving maps, 173-174
scaling

game environments, 213-216
textures, 249

scenario designers, role described, 33
schools that teach game design, 14
scripted gameplay

design and placement on map, 156-157
setting up, 104-105

scripting
creating rules for in-game object

responses, 25
in Splinter Cell, 325-326
language, and level design,6, 47

section and layer techniques for building
levels, 223-227

sectors and performance optimization,
228-229

selection boxes, 201
self-illuminating objects, 262

shaders, using, 244-245
shadows

contrast and, 266-267
dynamic, 260

shapes, complex, 222-223
side view, camera controls, 178
sign-offs on paper designs, 165
Silent Hill, 62,297
‘sim’ games, 105
Sims, The, 58

344 Game Level Design

size
of avatar, 79
of nonplayer characters, 143

skeletal meshes, 181

skins (textures), 248
skyboxes, skydomes, 272-273
Smith, Dream, 78-82
Smith, Harvey, 90, 110-119
snapping objects to grid, 204-205, 236
software and design environment, 160
sound

atmospheric audio, 298
and creating tension, 102

designers, role described, 38-39
and good level design, 285
team, reviewing level with, 164

sound effects
atmospheric audio, 298
early use of, 8-9

Southern Methodist University, 14

Space War, 8, 10

spawn points, placement of, 153

spawners and performance optimization,
232-233

special effects artists, 35

specifications, target and minimum, 135
Splinter Cell, 102, 290, 305-329
spokes and hubs, levels flow model, 90-92
spot lights, 258-259
sprites, 275
stability problems, 221-222
stages

developing games in, 11

and levels, 6

stairs, connecting, 158

standards for game design, 13

states of being, 105-107
static mesh actors, adding, 198-199
static meshes

geometry described, using, 181-182
lighting, 254-255

whento use, 179

story line
creating tension, 100-103
and flow, 87
in level games, 18
narrative chapters and, 11

plot elements and player attachment,
297

vs. gameplay, 18, 40
writer’s role, 39-40

structural holes, 221

style and theme, 284-285
style guides, 242-243
subtractive geometry, 183

sunlight, 260, 265
surfaces, texturing, 243-244
symbols

Al output, 107
in design key, 152-153

system designers, role described, 33-34
system requirements for CD-ROM, 336
System Shock, 117

systemic level design, 90

T

target specifications vs. minimum specifica-
tions, 135

teams, game development. See development
teams

technical limitations of level design,
136-140 :

technology and the pipeline, 46
temporary modifiers, 144-145
tension, creating, 100-103
tester’s role described, 40
testing

levels in game engine, 192-193
your work repeatedly, 233

Tetris-style puzzle game (fig.), 17

texture artists, role described, 35

textures
applying, 196-197, 243-249
breaking up geometry to support, 250
‘bubble wrap,” 186

changes in, 70
colors within, 250-251
projected, 268
tiling, 247-249

theme, elements of, 284-288
Thief: Deadly Shadows, 105, 123

thinking of AI characters, 130
third-person titles, scale problems in,

213-216
tiling textures, 247-249
time deadlines and release dates, 45
timing and player encounters, 98
tints, color, 257
Tom Clancy’s Splinter Cell. See Splinter Cell
tools for design environment, 160
tools programmers, role described, 37

top-down strategy games and performance
speed, 128-129

top view, camera controls, 178

topography, changing, 66
triggers

design and placement on map, 154-155
and lighting, 268

trim textures, 250
troubleshooting construction quality,

217-223

u
Underworld, 117
undoing in UnrealEd, 175
Unreal Developer Networks, 250
Unreal Tournament 2003, 104
UnrealEd

adding static mesh actor, 198-199
applying texturesto levels, 196-197
building level hull in BSP, 183-187
camera movement controls in, 177-178
changing build parameters, 200
license agreement, 337-340
loading textures, 193-195
maneuvering in 3D space, 177

measurement units, 195-196
moving actors in level, 197-198
placing actors, 187-192

starting maps, 173-174
system requirements for, 336
testing the level, 192-193
tutorials on, 203
undo and redo, 175

user-defined metrics, 145

Vv

vertex lighting, 253-255
vertices, 125 \

described, 204
moving, 201

viewports (UnrealEd), 175-176
visibility of triggers, 155

Visio program, 160
visual

description, designing level ingredients,
95

design, graphics vs. gameplay, 240-241
problems, 221

visuals, conceptualizing levels with, 162-163
volume in game environments, 216-217

w
walkthroughs described, creating docu-

ment, 161

walls, 194-195, 221-222
war rooms, and level design, 149

wave, difficulty, 72

weapons
consistency with theme, 288
degrading, 103

weather conditions, 138-139
Web sites

Epic Games, 203
information on level design, 333
Mathematical Help Central, 151

whiteboxing
described, 208
level hull, 212-223
process described, 210-212

Wilkinson, Hayden, 48-53
Wind Walker, The, 100
wireframes, builder brushes, 186

wonderment, evoking in players, 295
workflow scale model, 114
‘Wow’ factor in games, 74-76, 295
writers, role described, 39-40

X

Xbox,135, 320

z
Z-buffer fighting, 217-219
zones and trigger events, 154-155
zoning maps and performance optimiza-

tion, 228-230
zoom controls, UnrealEd, 178

